
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

Model-based compositional verification
approaches and tools development for cyber-
physical systems
Hao Ren
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ren, Hao, "Model-based compositional verification approaches and tools development for cyber-physical systems" (2018). Graduate
Theses and Dissertations. 16444.
https://lib.dr.iastate.edu/etd/16444

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16444?utm_source=lib.dr.iastate.edu%2Fetd%2F16444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Model-based compositional verification approaches and tools development for

cyber-physical systems

by

Hao Ren

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Program of Study Committee:
Ratnesh Kumar, Major Professor

Gianfranco Ciardo
Manimaran Govindarasu

Joseph Zambreno
Samik Basu

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2018

Copyright c© Hao Ren, 2018. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this dissertation to my wife Hui Dong and to my son Tianyi without

whose support I would not have been able to complete this work. I would also like to thank my

friends and family for their loving guidance and financial assistance during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

CHAPTER 1. OVERVIEW . 1

CHAPTER 2. VERIFICATION USING COUNTEREXAMPLE FRAGMENT BASED SPEC-

IFICATION RELAXATION: CASE OF MODULAR/CONCURRENT LINEAR HYBRID

AUTOMATA . 5

2.1 Introduction . 5

2.2 Related Works . 8

2.2.1 Symbolic Set-based Reachability Analysis . 8

2.2.2 Model Checking and Counterexample-Guided Abstraction Refinement 11

2.3 Notation and Preliminary . 12

2.3.1 Linear Hybrid Automaton (LHA) . 12

2.3.2 Linear Transition System (LTS) and Translation of LHA into LTS 15

2.3.3 Safety Verification Algorithm of LHA . 18

2.3.4 Concurrent LHA . 20

2.4 Implementation of LhaVrf . 22

2.4.1 Architecture . 22

2.4.2 An Illustrative Example . 24

CHAPTER 3. SIMULATION BASED VERIFICATION OF BOUNDED-HORIZON SAFETY

FOR HYBRID SYSTEM USING DYNAMIC NUMBER OF SIMULATIONS 29

3.1 Introduction . 29

3.2 Notation and Preliminary . 34

www.manaraa.com

iv

3.3 Reachable Tube Computation . 37

3.3.1 Error Growth in Continuous Evolution . 37

3.3.2 Reachable Set in a Single Time-Step . 38

3.4 Error Growth Control . 40

3.4.1 Effect of Stability Property on Error Growth 42

3.4.2 Benefits from Dynamic Partitions . 46

3.5 The Overall Algorithm . 46

3.6 Implementation and Experimental Results . 51

3.6.1 Implementation and Architecture . 51

3.6.2 Experimental Results . 53

3.6.3 Performance . 56

CHAPTER 4. “ReLIC: REDUCED LOGIC INFERENCE FOR COMPOSITION” FOR

QUANTIFIER ELIMINATION BASED COMPOSITIONAL REASONING AND VER-

IFICATION . 58

4.1 Introduction . 58

4.2 QE support for Verification: Integration of Redlog with JKind 62

4.2.1 Preliminary . 62

4.2.2 Reduction of SMT instance to QE instance 63

4.2.3 Experimental result . 65

4.3 ReLIC for time-independent property composition . 67

4.3.1 Proposed QE-based compositional verification 68

4.3.2 Implementation and experimental result . 70

4.4 ReLIC for time-dependent property composition . 74

4.4.1 Approach to time-dependent property composition 74

4.4.2 Implementation and experimental result . 80

CHAPTER 5. CONCLUSION . 85

BIBLIOGRAPHY . 88

www.manaraa.com

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this dissertation. First and foremost, Dr. Ratnesh

Kumar for his guidance, patience, and support throughout this research and the writing of this

dissertation. I would also like to thank my committee members for their efforts and contributions

to this work: Dr. Ciardo Gianfranco, Dr. Manimaran Govindarasu, Dr. Joseph Zambreno, and

Dr. Samik Basu. I would additionally like to thank Matthew Clark of Air Force Research Lab for

collaboration and the guidance of part of my work and Dr. Stanley Bak of Air Force Research Lab

for the guidance of part of my work.

www.manaraa.com

vi

ABSTRACT

The model-based design for embedded real-time systems utilizes the verifiable reusable compo-

nents and proper architectures, to deal with the scalability problem caused by state-explosion. In

this dissertation, we address verification approaches for both low-level individual component cor-

rectness and high-level system correctness, which are equally important under this scheme. Three

prototype tools are developed, implementing our approaches and algorithms accordingly.

For the component-level design-time verification, we developed a symbolic verifier, LhaVrf, for

the reachability verification of concurrent linear hybrid systems (LHA). It is unique in translating a

hybrid automaton into a transition system that preserves the discrete transition structure, possesses

no continuous dynamics, and preserves reachability of discrete states. Afterwards, model-checking

is interleaved in the counterexample fragment based specification relaxation framework. We next

present a simulation-based bounded-horizon reachability analysis approach for the reachability ver-

ification of systems modeled by hybrid automata (HA) on a run-time basis. This framework applies

a dynamic, on-the-fly, repartition-based error propagation control method with the mild require-

ment of Lipschitz continuity on the continuous dynamics. The novel features allow state-triggered

discrete jumps and provide eventually constant over-approximation error bound for incremental sta-

ble dynamics. The above approaches are implemented in our prototype verifier called HS3V. Once

the component properties are established, the next thing is to establish the system-level properties

through compositional verification. We present our work on the role and integration of quantifier

elimination (QE) for property composition and verification. In our approach, we derive in a single

step, the strongest system property from the given component properties for both time-independent

and time-dependent scenarios. The system initial condition can also be composed, which, alongside

the strongest system property, are used to verify a postulated system property through induction.

The above approaches are implemented in our prototype tool called ReLIC.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

As embedded real-time systems become more and more complex and mission- or safety-critical,

there is a recent trend to raise the level of abstraction to the model-level. Model-based design utilizes

the verifiable reusable components and proper architectures, to deal with the verification scalability

problem caused by state-explosion. Thus, ensuring low-level individual component correctness and

high-level system correctness are equally important under this scheme.

For example, in a distributed Cyber-Physical System (CPS) as shown in Figure 1.1, control units

are distributed, collecting sensor measurements driven by the underlying physical dynamics, com-

manding target actuators, while interacting/communicating through an embedded bus/network.

To formally specify the entire system architecture, AADL (standardized by SAE) [1] can capture

the architecture of software, computing/communication hardware/medium, and physical compo-

nents, together with their behavior models, and other constraints.

Figure 1.1: A distributed CPS

Verification techniques of such CPSs are manifold and varying across different types of compo-

nents and the system according to the modeling and design/operation stages. In this dissertation,

we present our work on (i) component-level design-time verification, (ii) component-level runtime

verification, and (iii) system-level design-time compositional reasoning.

www.manaraa.com

2

In a model-based system, examples of mathematical objects often used to model system com-

ponents in design-time are: Extended/Timed Automata for discrete real-time behaviors in the

software/computation/communication components and Stochastic Hybrid Automata for the phys-

ical components (those are subject to noise), etc. We have developed a symbolic verifier, LhaVrf,

for the symbolic reachability verification of concurrent linear hybrid systems. A concurrent linear

hybrid automaton is composed of a set of linear hybrid automata that interact through shared

variables and/or events. A linear hybrid automaton is first translated to a purely discrete linear

transition system that preserves the reachability of discrete states (locations). Its analysis can

be conducted in the proposed counterexample fragment based specification relaxation (CEFSR)

framework, where an invalid fragment (a subsequence) of a counterexample is used to eliminate

the entire set of counterexamples sharing the same fragment, by way of specification relaxation

(as opposed to the more traditional, model refinement). In the concurrent system setting, we pro-

pose further enhancement towards scalability as follows. For each spurious counterexample, an

unsatisfiable core associated with it that makes the counterexample invalid, is identified and used

for specification relaxation. This results in eliminating the entire set of spurious counterexamples

sharing the same unsatisfiable core in a single iteration. Our implementation of LhaVrf adopts

the above key ideas, with the capability of automatically translating the hybrid automata into

discrete transition system, composing the concurrent model, and using SMT solver for validating

counterexamples and fast-searching for the unsatisfiable core. The verification approach and the

prototype verifier are illustrated via an application to the Fischer mutual exclusion protocol in

Chapter 2.

In all safety-critical applications, we need to know on a run-time basis, whether the system un-

der consideration will remain safe in a bounded future (corresponding to the reaction time required

to take any corrective actions). One approach to bounded-time safety is the computation of the

reach set over that horizon. Hybrid system verification tools based on reachability analysis incur

over-approximation errors or have restrictions on the class of systems they can handle. In Chap-

ter 3, we present a simulation-based bounded-horizon verification framework for general systems

www.manaraa.com

3

modeled by hybrid automata, with a mild requirement of Lipschitz continuity on the continuous

dynamics. In this framework, the bounded initial set is covered by a finite set of representative

states, whose forward simulations are used to generate an overapproximation of all the reachable

states of the initial states. A novel feature of our approach is that the representative states are

generated dynamically, on-the-fly, while the forward simulations are being performed. This is a key

innovation introduced in the paper that refines the current “reachability-face” by a new partition

only when needed. Our approach works for general class of hybrid systems with state-triggered

discrete jumps and also allows piecewise constant bounded inputs, extending the existing work

that applied to switched systems, that did not have state-triggered discrete jumps (switching was

time-based and known a priori), and had no inputs. Additionally, when a dynamical system is

incremental (input-to-state) stable, our algorithm that uses a simple Lipschitz-based discrepancy

function provides an eventually constant error bound of over-approximation. This is indeed of

practical significance since a Lipschitz-based discrepancy function is easily computable, while a

more precise discrepancy function may not be available, but if it is, our algorithm can also utilize

it. As a consequence of the constant error bound, owing to incremental (input-to-state) stability,

the number of representative simulations also converges to a constant. We have developed a pro-

totype verifier, HS3V, implementing our algorithms and providing verification results from several

benchmarks to show its effective performance.

Last by not least, one central goal of model-based development is to enable analysis of the sys-

tem. System-level properties are often expected to be derived from the compositional reasoning of

the requirements on the components to be implemented and/or the verified properties of reusable

elements. To achieve that, we look into taking advantage of state-of-art technologies on compo-

sitional verification, currently focusing on discrete-state systems (cyber part of CPS). Quantifier

elimination (QE) is a powerful technique for gaining insight, through simplification, into problems

involving logic expressions in various theories. We present our work in Chapter 4 on the role and

integration of QE for compositional verification. In contrast to the current proof-based approach

as for example in AGREE [2], in our QE-based approach, we derive in a single step, the strongest

www.manaraa.com

4

system contract from the given component contracts. This formalism is first developed for time-

independent contracts, and later also extended to the case of time-dependent property composition.

The extension to the time-dependent/temporal case requires additional work, namely, replicating

the given properties by shifting those along time so the entire time-horizon of interest is captured.

We show that the time-horizon (or order) of a system property is bounded by the sum of the time-

horizons (or orders) of the component properties. The initial conditions of the components are also

composed to obtain the system-level initial condition, which, alongside the inferred strongest system

property, is used to verify a postulated system property through induction. We implemented our

above approaches in a new prototype tool called ReLIC (Reduced Logic Inference for Composition)

and demonstrated it through several examples. Additionally, in a k-induction [3] based model-

checking approach, the verification problems of the base and inductive steps can be reduced to the

QE problems in which all the variables are existentially quantified. Thus such a model-checker can

be extended with QE tools to provide back-end solver options. Our implementation of integrating

the QE tool Redlog [4] with the model-checker JKind showed the successful resolution of a nonlin-

ear computation (emanating from a fuzzy logic operation) that the SMT-solver supported JKind

[5] was unable to resolve. Thus the QE-integrated solver can provide an alternative option to a

model-checker.

Chapter 5 gives the conclusion.

www.manaraa.com

5

CHAPTER 2. VERIFICATION USING COUNTEREXAMPLE

FRAGMENT BASED SPECIFICATION RELAXATION: CASE OF

MODULAR/CONCURRENT LINEAR HYBRID AUTOMATA

2.1 Introduction

A typical cyber-physical system (CPS) exhibits complex behaviors caused by interleaving dis-

crete transitions guided by discrete control actions or constraints, and continuous dynamics gov-

erned by underlining ordinary differential equations. Hybrid automaton (HA) [6, 7] has become a

widely accepted choice for CPSs by integrating discrete transitions with continuous dynamics. An

HA consists of multiple discrete modes. In each mode, a set of real-valued variables evolve according

to specified flow dynamics and invariant, while the mode switches and value resets are guided by

guards and jumps. An HA is called Linear Hybrid Automaton (LHA) when its flow dynamics, flow

invariants, transition guards and jump conditions are all constrained by linear predicates.

In the domain of safety verification of hybrid systems, one seeks to prove or disprove a system’s

reachability to a set of unsafe states, given its initial states and dynamics. Some systems require

safety at each moment, while for some other systems, the safe behavior is required to be main-

tained over a bounded time, but on a runtime basis. Normally, the reachability analysis requires

the computation of the reachable set, and in the presence of continuous dynamics, this is typically

undecidable. However, semi-decision algorithms can be developed under counterexample-guided

abstraction refinement (CEGAR) [8] framework, by employing symbolic model checking over the

finite-state abstractions, together with the iterative refinements to eliminate the spurious coun-

terexamples. In case of the termination of a CEGAR algorithm, either the system is proven to be

safe or a concrete counterexample is produced.

Parts of the work presented here was first reported in [9, 10], whereas we introduced an en-

hanced CEGAR-based algorithm for the verification of a class of hybrid systems modeled by LHAs.

www.manaraa.com

6

Our work is unique in translating an LHA into a linear transition system (LTS) that preserves the

discrete transition structure, possesses no continuous dynamics, and also preserves the reachability

of discrete states (locations). Note checking the reachability of discrete locations suffices for verify-

ing a class of safety specifications for which the model can be “refined against the specification” to

reduce it to checking the unreachability of certain unsafe locations (locations, whose reachability

implies the specification violation). The extension of the translation approach to general hybrid

systems with inputs and outputs was later presented in [11]. The translation reduces the discrete

state reachability problem of the original LHA to the one of the corresponding LTS. The safety

property of the LTS is examined starting with the underlying discrete state automaton as the ab-

stract model. There are several advantages of specification relaxation as opposed to the standard

abstract model refinement: (i) Firstly, specification relaxation is more straightforward than model

refinement, since all that needs to be done is to encode the counterexample to relax the specification,

so in a next round it can no longer remain a counterexample; (ii) in fact in our approach we identify

an unsatisfiable core (unsat-core) that is the minimal conflicting constraint set (see [10, 12]) over

the constraints derived from a counterexample path. By using the encoding of the “unsat-core” to

relax the specification, we are able to rule out an entire set of counterexamples possessing the same

“unsat-core”; (iii) since there is no change in the underlying abstract model, the counterexamples

of newer iterations can still be interpreted over the same underlying discrete graph structure, aid-

ing the understanding of the counterexample. We refer to our approach counterexample fragment

based specification relaxation (CEFSR). We also developed a prototype tool LhaVrf, based on the

approach described above and extending the initial development reported in [12]: The symbolic

model checker NuSMV is integrated for model checking, whereas the SMT (satisfiability modulo the-

ory) solver Z3 [13] is integrated for counterexample validation and unsat-core identification. Our

contributions that integrate past works and recent enhancements are summarized as follows:

• We provide a systematic method for the translation from LHA to a purely discrete abstraction

LTS, that preserves the discrete behaviors (sequences of discrete states visited), and thereby

also the safety and reachability properties.

www.manaraa.com

7

• We have developed a framework for the safety verification of LHA, utilizing the LHA to

LTS translation, called CEFSR (counterexample fragment based specification relaxation), in

which a counterexample fragment is used for relaxing the safety specification as opposed to

for refining the abstract model, and as explained in a next bullet multiple counterexamples

are eliminated in a single iteration.

• To enhance scalability, an unsatisfiable core of a counterexample is identified, and encoded

for specification relaxation so as to eliminate an entire set of spurious counterexamples that

possess the same unsatisfiable core constraint set.

• We have developed an automated safety verification tool LhaVrf for concurrent LHA, based

on the above techniques. The tool is integrated with NuSMV for model-checking, and with

SMT solver Z3 for counterexample validation and unsatisfiable core identification.

• The tool is validated with a system possessing 10 components, each with 4 locations, implying

an overall locations space of size 410 = ∼1M , and about ∼13M discrete transitions, validating

the scalability of the approach and the tool.

• Finally, while the algorithm is presented in the domain of LHA, the tool’s capability is ex-

tended to more general hybrid automaton allowing nonlinear guard/jump conditions (flows

are still constrained by rectangular predicates).

This chapter extends the conference version [12] in multiple ways. First, a new section on related

works from the literature is added, covering recent and historical development of algorithms and

tools with respect to both (variable) state and location reachability analysis for hybrid systems.

Secondly, we upgraded the tool LhaVrf by integrating the state-of-the-art SMT solver Z3. Z3 is used

for counterexample validation to replace the previously implemented Linear Programming solver

via Microsoft Solver Foundation, allowing LhaVrf to be more scalable and extend its capability to

handle nonlinear constraints for guards/jumps. Z3 is further used for identifying the unsatisfiable

core for a spurious counterexample using its built-in command “unsat-core”, replacing the previous

bisection based search algorithm, making the tool much more computationally efficient. Lastly, an

experiment on a 10-process Fischer mutual exclusion protocol is added to show the scalability.

www.manaraa.com

8

Rest of the chapter is organized as follows. Section 2.2 presents related works from the literature.

Section 2.3 provides notations and preliminaries. Section 2.4 gives the implementation details of

the LhaVrf. An illustrative example of its application to the Fischer mutual exclusion protocol is

provided in Section 2.4.2.

2.2 Related Works

2.2.1 Symbolic Set-based Reachability Analysis

It is usually undecidable to compute the reachable set, except for certain subclass of LHAs that

for example include timed automata, and initialized rectangular automata, etc. For clarification,

the flow dynamics of LHA in this dissertation is rectangular, i.e., of the form ẋ ∈ [a, b], where a,

b are constants. Polyhedral flow representation is also used, e.g., first by the tool HyTech [14], for

simple reason that polyhedral regions are invariant under linear discrete and continuous transitions.

For continuous dynamics described by linear differential equations of form ẋ = ax + b, where

a, b are constant, the analytical solution for x is an exponential curve. Some literature [7, 15, 16,

17] employ the term Linear Hybrid System (LHS) to denote a hybrid automaton with such flow

and linear invariants, guards and jumps. For LHS, although the reachable set, starting from a

polyhedron, is also a polyhedron at any given moment, but the entire region of reachable states

over time is not. Systems with nonlinear dynamics have more complicated continuous behaviors

that often rule out analytical solutions. It is possible to use polyhedron representation for over-

approximating the reachable set for both LTSs and nonlinear hybrid automata. In such scenarios,

the over-approximation of overall reachable set grows by either expanding the current polyhedron

zone, or adding new polyhedra for each time interval to construct flow pipes/tubes. Usually, better

precision can be achieved by lowering the size of time intervals. In practice, the choice of time

interval usually depends on the trade-off between demanded accuracy and computational cost.

The tool d/dt [18] tries to expand the polyhedron that contains the overall reachable set by

lifting its faces outwards for a certain distance based on the vector field along the faces for each time

interval [19]. However, the expansion may produce unboundedly large over-approximation. Instead

www.manaraa.com

9

of computing the over-approximation of the overall reachable set, the later tools focused on the

reachable sets in the sequential time intervals. For each time interval [tk, tk+1], CheckMate [20] first

computes the convex hull of the polyhedron vertices at tk and tk+1, then bloats this convex hull along

the directions of the normal vectors to its faces to compute the minimal convex set containing the

reachable set in [tk, tk+1]. This reduces to a non-convex optimization problem solved numerically

by MATLAB numerical package. C2E2 [21, 22], developed for verification of annotated hybrid

systems and Stateflow models, blows a simulation trace to a reachtube (consecutive polyhedron over-

approximation for sequential time intervals) to represent a group of executions within a close enough

neighborhood loosely bounded by Lipschitz property of the continuous dynamics. If possible,

annotations to the dynamics are used to derive so-called discrepancy functions that provide less

conservative bounds on the error of the reachtube than Lipschitz-based ones. Recent version of

C2E2 supports on-the-fly discrepancy function computation based on local optimization [23, 24].

Support function [25, 26] is another form for representing the reachable set, developed since 2009

for hybrid systems with piecewise affine continuous dynamics. Given the fact that any convex set is

the intersection of a set of half-spaces, represented using normal vectors and distance values, a large

class of sets such as unit ball, ellipsoid, zonotope, etc. can be represented by support functions in

a compact manner. Further, more complex sets can be obtained using linear mapping, convex hull,

Minkowski sum operations etc. on elementary convex sets. These operations on support functions

are used to compute the post-image of a currently computed reachable set. Due to the expres-

sive compactness and computational effectiveness of the support functions, SpaceEx [27, 28], that

adopted this technique, has increased the scope of linear systems that can be verified to several hun-

dreds of state variables. SpaceEx recently combines Zonotope representation for the input solution

of a linear system with the support function representation of the affine solution [29], to balance

the approximation error and scalability during flowpipe construction, as well as reduce complexity

of handling time-triggered switching. For state-triggered discrete transitions, support functions are

not efficient on intersection and deciding containment – operations often used in determining if a

guard is triggered or an invariant/safety condition is violated. Thus, SpaceEx has to also mix in

www.manaraa.com

10

the polyhedral representation into the verification algorithm, making the extra over-approximating

translations during the discrete transitions. Errors introduced during frequent discrete transitions

may become a major bottleneck for precision in SpaceEx. Improvement has been done on elimi-

nating spurious discrete transitions caused by conservative over-approximation involving template

polyhedra, and checking the existence of a hyperplane that separates the guard set from the flow-

pipe [30]. A model translation technique implemented by Hyst [31, 32] is used to alleviate the

same problem using a different approach. Hyst over-approximates the original frequently switching

continuously-controlled system with a continuously-controlled system with an additional bounded

non-deterministic input, resulting in the so-called continuization, which eliminates a large number

of discrete transitions, thereby eliminating error growth caused by frequent translations between

the aforementioned two types of representations occurring at the discrete transitions.

Taylor Model (TM) [33, 34], also developed since 2009, tightly encloses a flow of a differentiable

function, expressed by its Taylor polynomial of degree up to k, bloated by an interval representing

higher order reminder terms over a time interval. With proper interval-based techniques and se-

mantically derived TM arithmetic operations, the tool Flow* [35] is able to construct TM flowpipes,

i.e., the reachable sets of continuous nonlinear dynamics in sequential time intervals. As a result,

TMs can provide guaranteed over-approximation to the solutions of ordinary differential equations

(ODEs). For nonlinear dynamics, high accuracy demands higher order TMs, which in turn increases

the number of parameters to be computed, often consuming significant resources. Instead of using

an unified and fixed order for all state variables, one improvement is to adjust the TM order on-the-

fly depending on the local varying rate for each state variable independently. Adaptive TM orders,

along with adaptive time intervals were added as new features in the recent version of Flow* [36].

Because of the similar complications as SpaceEx for handling the intersections operation, Flow*

also needs to translate between the TMs and the other effective representations back and forth. It

is possible that Flow* could also benefit from using Hyst as a model preprocessing tool to alleviate

this translational problem, especially for in case of frequently switching dynamics.

www.manaraa.com

11

Despite the diversiform representation of reachable set, most state-of-the-art verification tools

have been advancing by digging into the knowledge of nonlinear dynamics in Control Theory,

searching for annotations and parameters that diminish the over-approximation error bound with-

out exhausting computation resources. Readers can refer to [23, 24, 36, 37, 38] for further technical

details. In contrast, a recently developed tool HS3V [39] (see Chapter 3) for verification of general

nonlinear hybrid automata proposed a different approach on over-approximation error propagation

control. HS3V is built upon simulation-based over-approximation framework. Its unique idea is to

suppress the existing error periodically by dynamic repartitions and simulations on-the-fly. Be-

cause a repartition makes the existing error covered by multiple simulations (therefore more finely

gridded) instead of the only one from the initial partition, even with very conservative error bound

based on Lipschitz property which grows exponentially in between repartitions, the accumulated

error “tightened up”, or even gets suppressed to zero as time approaches infinity if the dynamics

happens to be convergent. Regardless of how the error accumulates, this feature often results in a

good error bound not only for complex nonlinear hybrid systems without any (usually hard-to-get)

annotations from the users, but also for frequently switching dynamics.

2.2.2 Model Checking and Counterexample-Guided Abstraction Refinement

Another thread in hybrid system verification focuses on systems where the unsafe behavior

is represented by a set of discrete unsafe locations. The major effort in safety verification is

discretization-based over-approximation and the reliance on symbolic model checking [40] based

on BDD and SAT [41]. In this context, CEGAR [8] has been proved to be successful. It involves

iterations consisting of system abstraction, symbolic model checking, counterexample validation

and abstraction-refinement. While there are some powerful tools for symbolic model checking, e.g.,

NuSMV and SPIN, which are commonly integrated in many CEGAR algorithms, these algorithms

may vary on the abstraction-refinement schemes. In [16, 42], the abstraction of an LHA is a low-

dimensional LHA constructed using a subset of the continuous variables from the original LHA.

Model checking is done on its discrete transition graph. Once a spurious counterexample is identi-

www.manaraa.com

12

fied by solving the constraints along the path of the original LHA using Linear Programing, a subset

of the variables that preserves the infeasibility of the counterexample is selected then added to the

set of variables used thus far to construct a new abstracted LHA. Abstraction gets refined in each

iteration and excludes previously discovered spurious counterexamples. This incremental variable

set abstraction allows users to diagnose and twist design parameters so as to eliminate undesirable

behaviors. The tool HARE [43] abstracts a rectangular hybrid automaton via the following opera-

tions: collapsing the control states and transitions, dropping the continuous variables and scaling

the variables. In the end, the abstract model is an initialized rectangular automaton and may have

different discrete transition graph from the original model. HARE makes calls to HyTech to analyze

abstract model and generate counterexamples. Since the reachability problem on the initialized

rectangular automata is proven to be decidable, HyTech guarantees termination on the abstract

model. Then upon the analysis to the spurious counterexample, HARE refines the abstraction by

splitting control states/transitions, and/or adding variables that may have new dynamics (due to

scaling). In general, HARE carries out a CEGAR framework with symbolic reachability analysis

replacing symbolic model checking.

The complex behaviors of hybrid systems has attracted researchers with varying approaches,

beyond the scope of methodologies and tools covered in the section above. These include phase-

portrait adopted by PHAVer [44], theorem proving by KeYmaera [45], SMT-based techniques (e.g.

BMC, k-induction) by HyComp [17] and Passel [46], to name a few. [15, 47, 48] further provide

literature review on hybrid system verification technologies and tools.

2.3 Notation and Preliminary

2.3.1 Linear Hybrid Automaton (LHA)

Let V = {v1, v2, . . . , vn} be a set of real-valued variables and ~v = (v1, v2, . . . , vn) be their

vector representation. A convex linear predicate over V is a finite boolean conjunction of linear

inequalities over V . For a linear predicate φ and a valuation ~a over ~v, we write φ[~v := ~a] for

the truth value obtained by evaluating φ with the constant ai replacing in φ all occurrences of

www.manaraa.com

13

the variable vi. Every linear predicate φ over ~v defines a set [φ] ⊆ R
n of valuations such that

[φ] = {~a ∈ Rn | φ[~v := ~a] = true}.

Definition 1. A linear hybrid automaton is a tuple A = (L, V,Σ, E, Init, f low, inv, guard, jump)

consisting of the following components:

• L is a finite set of locations,

• V = {v1, v2, . . . , vn} is a finite set of real-valued variables. The state space of A is L × Rn.

Each state thus has the form (l,~a), where l ∈ L is the discrete part of the state and ~a ∈ Rn

is the continuous part,

• Σ is a finite set of events,

• E ⊆ L× Σ× L is the set of discrete transitions,

• Init ⊆ L× Rn is the set of initial states,

• flow is the flow function that assigns each location l ∈ L a convex linear predicate flow(l)

over ~̇v that constrains the rates at which the values of variables change within the set [flow(l)],

• inv is the invariant function that assigns each location l ∈ L a convex linear predicate inv(l)

over ~v that constrains the values of variables within the set [inv(l)],

• guard is the guard function that assigns each transition e = (l, σ, l′) ∈ E a convex linear

predicate guard(e) over ~v such that e is enabled at state (l,~a) only if ~a ∈ [guard(e)],

• jump is the jump function that assigns each transition e = (l, σ, l′) ∈ E a convex linear

predicate jump(e) over ~v and ~v′ such that if e is taking place from state (l,~a) to state (l′,~a′),

then (~a,~a′) ∈ [jump(e)], i.e., jump(e)[~v := ~a,~v′ := ~a′] = true.

We use subscript to denote the position of a specific element in a vector, and superscript to

differentiate valuations of a variable at different occasions . A run in A is a (finite or infinite)

sequence r = (l0,~a0)(l1,~a1) . . . (li,~ai) . . . such that there exists a sequence of events σ0σ1 . . . σi . . .

satisfying following properties:

• ∀i ≥ 0, (li, σi, li+1) ∈ E,

• There exists a sequence of non-negative real numbers t0t1 . . . ti . . . and a sequence of functions

~̇x0~̇x1 . . . ~̇xi . . . , where ∀i ≥ p, ~̇xi : [0, ti]→ R
n such that

www.manaraa.com

14

– ∀i ≥ 0, ∀t ∈ [0, ti], ~̇xi(t) ∈ [flow(li)],

– ∀i ≥ 0, ∀t ∈ [0, ti], (~ai +
∫ ti

0 ~̇xi(t)dt) ∈ [inv(li)],

– ∀i ≥ 0, (~ai +
∫ ti

0 ~̇xi(t)dt) ∈ [guard((li, σi, li+1))],

– ∀i ≥ 0, jump((li, σi, li+1))[~v := ~ai +
∫ ti

0 ~̇xi(t)dt,~v′ := ~ai+1] = true.

Remark 1. In this dissertation, the terminology linear hybrid automaton (LHA) is used to mean

differently from a linear hybrid system (LHS): In LHA, the flow rates are linearly constrained. In

contrast, by LHS we mean a system where the flow rate is governed by a linear ordinary differential

equations (ODE). Such definitions are also adopted elsewhere, as [7, 15, 16, 17].

Example 1. The Fischer mutual exclusion protocol is used to guarantee mutual exclusion for shared

resources in a concurrent system consisting of a number of processes. Each process i is assumed

to have a local clock modeled by the variable v i. The global variable n is used to coordinate the

access to the critical section. The LHA model Proc i (to distinguish from the location A i) for the

ith process is shown in Figure 2.1. There are two global positive real-valued parameters D1 and D2

in the model. D1 represents the upper bound on the time that each process could take in changing

the shared variable to its own number, and D2 represents the lower bound for the time that each

process must wait before it can check the variable value again.

Figure 2.1: LHA model Proc i for process i in the Fischer protocol

Proc i = (L i, V i,Σ i, E i, Init i, f low i, inv i, guard i, jump i) is the LHA model for

the ith process, where

www.manaraa.com

15

• L i = {I i, R i, C i, A i},

• V i = {v i, n},

• Σ i = ∅,

• E i, Init i, flow i, inv i, guard i and jump i are clear from Figure 2.1.

2.3.2 Linear Transition System (LTS) and Translation of LHA into LTS

In this section we introduce the notion of a linear transition system (LTS) that is a purely

discrete-state system, and present a translation from an LHA to an LTS to obtain a discrete-

state abstraction that preserves the set of discrete behaviors (sequences of discrete states visited),

including the reachability of discrete states (see Theorem 1). Note the LTS model does not possess

any continuous dynamics. This is a key contribution of our approach. Under this equivalence, a

reachability check over LHA can be reduced to an equivalent reachability/safety check over the

LTS, while a counterexample validation is reduced to a standard linear programming (since LHAs

are only endowed with linear predicates).

Definition 2. A linear transition system is a tuple S = (L, V,Σ, E, Init, P), where L, V,Σ, E and

Init are the same as in Definition 1, and P is the transition relation function that assigns each

transition in E a convex linear predicate over {v1, v2, . . . , vn, v
′
1, v
′
2, . . . , v

′
n}, i.e., ∀e = (l, σ, l′) ∈

E,P : e 7→ pe(~v,~v
′), which relates the variable values at locations l and l′.

A run in S is a (finite or infinite) sequence r = (l0,~a0)(l1,~a1) . . . (li,~ai) . . . such that there exists

a sequence of σ0σ1 . . . σi . . . , ∀i ≥ 0, (li, σi, li+1) ∈ E and p(li,σi,li+1)[~v := ~ai, ~v′ := ~ai+1] = true.

In the following we discuss the translation from an LHA to its discrete-state abstracted LTS, in

which continuous state vector ~v− (respectively, ~v+) represents the values just before (respectively,

after) the LTS executes a transition and enters the current location l, and t represents the time

that the system spends at the previous location. The primed variables ~v′−, ~v
′
+, t
′ correspond to

the variables v−, v+, t at the next stage when a next transition is taken (see Figure 2.2). It then

follows that a flow constraint ~̇v ∈ [a, b] in an LHA is mapped to a linear constraint of the type,

www.manaraa.com

16

(~v′− − ~v+)/t′ ∈ [a, b] ∧ t′ ≥ 0 in the translated LTS. The invariant, guard, and jump conditions are

also translated accordingly as described below.

Figure 2.2: Translation from an LHA A (partial) to its discrete-state abstracted LTS SA.

Given an LHA A = (L, V,Σ, E, Init, f low, inv, guard, jump), we can construct the following

LTS SA = (L,W,Σ, E, InitS , P), where

• W = V− ∪ V+ ∪ {t}, with V− = {v1−, . . . , vn−} and V+ = {v1+, . . . , vn+},

• let ~w = (v1−, . . . , vn−, v1+, . . . , vn+, t) and ~β be a valuation of ~w, then (l0, ~β0) ∈ InitS with

~β0 = (0, . . . , 0, 0, a0
1, . . . , a

0
n),

• ∀e = (l, σ, l′) ∈ E, p(e) = flow(l)|~̇v←(~v′−−~v+)/t′ ∧ inv(l)|~v←~v′− ∧ guard(e)|~v←~v′−
∧ jump(e)|~v←~v′−,~v′←~v′+ ∧ inv(l′)|~v′←~v′+ ∧ (t′ ≥ 0).

In order to handle the case of t = 0, every inequality in flow(l)|~̇v←(~v′−−~v+)/t′ is modified by

multiplying t′ at both sides.

Example 2. The LTS model SProc i = (L i,W i,Σ i, E i, InitS i, P i) derived from the LHA

model Proc i for process i in the Fischer protocol is shown in Figure 2.3, where

• L i = {I i, R i, C i, A i},

• W i = {v i−, v i+, n−, n+, t i},

• Σ i = ∅,

• InitS i = {(I i, (0, 0, 0, 0, 0))},

• E i is clear from the context of Figure 2.3,

www.manaraa.com

17

• P i defines the transition relation function as follows:

P i((I i, R i)) = (n′− = 0) ∧ (v i′+ = 0) ∧ (0 ≤ v i′+ ≤ D1) ∧ (t i′ ≥ 0),

P i((R i,C i)) = (v i′− − v i+ = t i′) ∧ (0 ≤ v i′− ≤ D1) ∧ (n′+ = i)

∧(v i′+ = 0) ∧ (v i+ ≥ 0) ∧ (t i′ ≥ 0),

P i((C i,A i)) = (v i′− − v i+ = t i′) ∧ (0 ≤ v i′−) ∧ (n′− = i) ∧ (v i′− ≥ D2)

∧(t i′ ≥ 0),

P i((A i, I i)) = (n′− = 0) ∧ (t i′ ≥ 0),

P i((C i, I i)) = (v i′− − v i+ = t i′) ∧ (0 ≤ v i′−) ∧ (n′+ 6= i) ∧ (v i′− ≥ D2)

∧(t i′ ≥ 0).

Figure 2.3: LTS model for process i in the Fischer protocol

For both A and SA, the discrete transition trace of r is (l0, σ0, l1)(l1, σ1, l2) . . . (li, σi, li+1)

Location l′ is reachable in A (or SA) if there exists a run in A (or SA) with a transition trace

(l0, σ0, l1)(l1, σ1, l2) . . . (li, σi, l′). The set of transition traces associated with all finite-length runs

in A (or SA) is called the language of A (or SA) and is denoted by L(A) (or L(SA)). It is obvious

that L(A) ⊆ E∗ (or L(SA) ⊆ E∗) and L(A) (or L(SA)) is prefix closed. There exists a precise

equivalence between an LHA and its discrete-state abstracted LTS. (see Theorem 1 in [10] and its

proof):

Theorem 1. Given an LHA A as in Definition 1, an LTS SA as in Definition 2 constructed using

above procedures satisfies L(SA) = L(A).

Theorem 1 shows that A and SA have the same behaviors over the discrete locations, i.e.,

L(A) = L(SA). Therefore, the reachability problem of A can be reduced to the reachability

problem of SA.

www.manaraa.com

18

Remark 2. Note one can also encode the reachability of some safe set of continuous states in the

form of the reachability of a certain discrete location, by first refining the original model with respect

to the given safe set of continuous states. Suppose such a safe region is encoded as φ . Then we can

introduce a new discrete state called “unsafe”, and split each transition edge e with guard guard(e)

into a pair of transitions, one guarded by guard(e)∧φ that reaches the original successor of e, and

another guarded by guard(e) ∧ ¬φ that reaches the newly added discrete location “unsafe”.

2.3.3 Safety Verification Algorithm of LHA

Given the notations introduced above, we have the following safety verification algorithm for

an LHA under the proposed CEFSR framework.

Algorithm 1: Safety verification of LHA.

Input: LHA A and its unsafe locations.

1 SA ← Translate(A);

2 GA ← Abstract(SA);

3 specsafe ← ¬Unsafe;

4 repeat

5 ce←ModelCheck(GA,G(specsafe));

6 if ce = null then

7 Terminate(“Safe.”);

8 else if Validate(SA, ce) = > then

9 Terminate(“Unsafe.”, ce);

10 else

11 unsat-core← UnsatCore(SA, ce) ;

12 specsafe ← specsafe ∨ Encode(unsat-core) ;

13 end

14 until running time limit is reached ;

15 Terminate(“Time out.”);

In line 1, the function Translate(A) returns the discrete-behaviors equivalent LTS SA con-

structed from LHA A following the procedures described in Section 2.3.2. In line 2, the function

Translate(SA) returns the discrete transition graph of SA as its abstraction model. Line 3 ini-

tializes the safety specification with the atomic predicate “¬Unsafe”, where “Unsafe” holds at the

given unsafe locations of A. Lines 4-14 form the CEFSR loop. In line 5, G(specsafe) is the temporal

www.manaraa.com

19

logic formula denoting the global safety specification, where “G” denotes the “globally” operator.

The function ModelCheck(GA,G(specsafe)) performs BDD-based model checking on GA against

G(specsafe). In case of satisfaction, ModelCheck(GA,G(specsafe)) returns null, and in line 7 the

function Terminate(“Safe.”) terminates the algorithm and prints “Safe.”. Otherwise, it returns a

counterexample ce = e0 . . . en in the form of a sequence of consecutive edges of SA, where only en

is the edge leading to an unsafe location. ce is concrete in SA if the constraint set along its path is

satisfiable. Note that the constraints of ce also include the initial constraint PInit. The validation

of ce is reduced to the SMT problem of checking PInit∧
(∧n

i=0 P (ei)
)
; this is performed by the func-

tion Validate(SA, ce). If Validate(SA, ce) returns true, the function Terminate(“Unsafe.”, ce)

terminates the algorithm and prints “Unsafe.”, together with the concrete counterexample ce. Oth-

erwise ce is called spurious if PInit∧
(∧n

i=0 P (ei)
)

is unsatisfiable. The function UnsatCore(SA, ce)

in line 11 computes an unsatisfiable core (unsat-core), which is a minimal subset of constraints

whose conjunction is still unsatisfiable. By mapping the unsat-core to the edges of SA, the function

Encode(unsat-core) returns the minimal invalid fragment (MIF) of ce, denoted by fmin. Note not

all constraints of an edge need to appear in the unsat-core for that edge to be included in MIF. Also

note due to the minimality requirement, the edges that appear in MIF must be consecutive since

any non-consecutive edges have no variables in common hence cannot conflict with each other.

We relax the specification to rule out all spurious counterexamples that share an unsat-core

by encoding the unsat-core and disjuncting it with the current specification. Then in the next

iteration, the relaxed specification accepts all counterexamples that contain the minimal invalid

fragment before reaching the unsafe location. Let fmin = ejej+1 . . . ek with 0 ≤ j ≤ k ≤ n. There

are two cases to consider. The first case is when PInit is included in the unsat-core (implying j = 0,

not vise versa). The consecutiveness property of the unsat-core implies that the MIF starts at the

initial location. So the specification must be relaxed so as to accept any path for which MIF appears

in the very beginning. On the other hand, if PInit is not in the unsat-core, then the specification

should be relaxed to accept the MIF to appear anywhere in a path, but prior to reaching an unsafe

location. Accordingly, the temporal logic encoding of the unsat-core is given by:

www.manaraa.com

20

Encode(unsat-core) =

∧k
i=0

(
Xi(liXli+1)

)
PInit ∈ unsat-core

(¬Unsafe)U
(∧k

i=j

(
Xi−j(liXli+1)

))
otherwise,

where “U” denotes the “until” operator, “X” denotes the “next” operator and Xi is the composition

of i number of “X”. We now establish the correctness of Algorithm 1 as follows.

Theorem 2. Algorithm 1 is correct.

Proof. Since GA is the abstract model of SA, L(SA) ⊆ L(GA). So if Algorithm 1 terminates

with “Safe.”, then it implies that the set of bad locations is not reachable in GA, thereby also

not reachable in SA or A. Otherwise if Algorithm 1 terminates with “Safe.”, then because of the

counterexample validation we know that the concrete counterexample ce is a valid run in SA, which

in turn implies that ce is a valid run in A following Theorem 1.

2.3.4 Concurrent LHA

Definition 3. Let A i = (L i, V i,Σ i, E i, Init i, f low i, inv i, guard i, jump i), i = 1, . . . , k,

the concurrent LHA, that is synchronously composed of A 1, . . . , A k, is given by A =‖ki=1 A i :=

(L, V,Σ, E, Init, f low, inv, guard, jump), where

• L := ×ki=1L i,

• V := ∪ki=1V i,

• Σ := ×ki=1Σ i, where Σ i = Σ i ∪ {ε},

• E := ×ki=1E i, where E i = E i ∪ {(l i, ε, l i) | l i ∈ L i},

• ((l 10, . . . , l k0),~a0) ∈ Init, iff (l i0,~a i0) ∈ Init i, where ~a i0 is ~a0’s projection on V i,

• ∀l = (l 1, . . . , l k) ∈ L, inv(l) := ∧ki=1inv i(l i),

• ∀l = (l 1, . . . , l k) ∈ L, let I(l, vj) = {i| flow i(l i)(vj) 6= null} be is the index set of

component LHA that has flow constraint on vj at l, define flow(l) := ∧vj∈V f(l, vj), where

f(l, vj) =

∧i∈I(l,vj)flow(l i)(vj) I(l, vj) 6= ∅

(v̇j = 0) I(l, vj) = ∅
,

www.manaraa.com

21

• ∀e ∈ E, guard(e) := ∧ki=1guard i(e i) ∧ syn(e), where syn : E → {>,⊥} is used to capture

user-specified enabling constraints. When guard(e) = ⊥, e is invalid,

• ∀e ∈ E, let J(e, vj) = {i|jump i(e i)(vj) 6= null}, where J(l, vj) is the index set of compo-

nent LHA that has jump constraint on vj at l, define jump(e) := ∧vj∈V j(e, vj), where

j(e, vj) =

∧i∈J(e,vj)jump(e i)(vj) J(e, vj) 6= ∅

(v′j = vj) J(e, vj) = ∅
.

The definition of the concurrent LHA above is a more compact version of the one in [9]. Note

in the context of a concurrent LHA, the edges within a MIF are the edges of the composed LHA,

and the unsat-core needs to be further mapped to the edges of underlying component LHAs. Each

concurrent edge ei in a fragment can be decomposed into a set of edges (e 1i, . . . , e ki), where

e ji denotes an edge from component LHA A j at the ith step. Then an unsat-core can further

map to a set of sequence of edges of the component LHAs. Accordingly the encoding of unsat-core

for a concurrent LHA, that maps down to minimal invalid fragments of individual component LHAs

is given by:

Encode(unsat-core) =

∧k
i=0

(
Xi∧

k∈Ki(l kiXl ki+1)
)

PInit ∈ unsat-core

(¬Unsafe)U
(∧k

i=j

(
Xi−j ∧

k∈Ki(l kiXl ki+1)
))

otherwise,

where Ki is the index set of component LHAs that participate in the ith step of the counterexample

and contribute to the unsat-core. Note that this encoding of unsat-core matches to the encoding in

case of a single LHA presented in the previous section. The following algorithm extends Algorithm 1

from the case of a single LHA to that of a concurrent LHA:

Algorithm 2: Safety verification of concurrent LHA

Input: Components LHA A i, i = 1, . . . , k and the unsafe concurrent locations.

1 A←‖ki=1 A i ; // Construct the concurrent LHA A from Ais

2 Algorithm1(A,unsafe concurrent locations) ; // Call Algorithm 1

www.manaraa.com

22

2.4 Implementation of LhaVrf

2.4.1 Architecture

The tool LhaVrf is implemented in the programming language F#. The architecture consists

of six modules, and the data flow among them occurs along the arrows, as shown in Figure 2.4.

Each of the modules is introduced separately in the following subsections.

Figure 2.4: Architecture of LhaVrf

2.4.1.1 Input Processor

The Input Processor accepts a series of txt files as its inputs. Each txt file MDL4LHA i.txt

describes a component LHA A i with the following syntax:

〈model〉 ::= 〈transition〉* 〈constraint〉* 〈var set〉 〈init loc〉〈init state〉* 〈unsafe loc〉

〈transition〉 ::= ‘$’ 〈location〉 〈edge〉 〈location〉

〈constraint〉 ::= 〈location〉 ‘:’ 〈flow〉

| 〈location〉 ‘:’ 〈invariant〉

| 〈edge〉 ‘:’ 〈guard〉

| 〈edge〉 ‘:’ 〈jump〉

〈var set〉 ::= ‘@’ 〈variable〉*

〈init loc〉 ::= ‘!’ 〈location〉

〈init state〉 ::= ‘!!’ 〈variable〉 〈number〉

〈unsafe loc〉 ::= ‘#’ 〈location〉*

www.manaraa.com

23

The Input Processor parses the syntactical lines in each input file and passes the data containing

the description information of the LHA to the Data Mapper (e1 in Figure 2.4).

2.4.1.2 Data Mapper

In the Data Mapper, each location or transition is assigned a unique id composed by its subsys-

tem index and its serial number in the subsystem. Each atomic predicate is mapped to its source

location or transition id. The unsafe locations are also stored here coupled with there own ids.

These mapping data is sent to Model builder (e2 in Figure 2.4) as well as Path Analyzer (e3 in

Figure 2.4) for later use.

2.4.1.3 Model Builder

The Model Builder collects all the data from the Data Mapper and computes the LTS model of

the concurrent LHA: For every possible concurrent edge, the module collects the relevant predicates

in the concurrent LHA model and converts them into the edge-predicate for the LTS model. Then,

the Model Builder calls the Path Analyzer (e4 in Figure 2.4) for validating the edge, and only when

the edge is valid, it adds the edge to the LTS model.

The Model Builder also collects the unsafe locations and encodes them into the initial LTL spec-

ification G(¬Unsafe). Then it passes the abstract model and the LTL specification in LTS2SMV.txt

to the Model Checker NuSMV (e5 in Figure 2.4).

2.4.1.4 Model Checker (NuSMV)

NuSMV is a well known symbolic model checker. Once called by the Model Builder, it checks

the abstract model in the LTS2SMV.txt file against its specification. If it is satisfied, the entire

program terminates with the output stating that the system is safe. Otherwise, a counterexample

is generated and written into SMV2LTS.txt and passed on to the Path Analyzer (e6 in Figure 2.4).

www.manaraa.com

24

2.4.1.5 Path Analyzer (SMT solver Z3)

The Path Analyzer accepts edge guards from the Model Builder and returns whether or not those

are satisfiable. It also accepts a counterexample returned from NuSMV, and gathers the predicates of

the counterexample edges from the Data Mapper. The SMT solver Z3 inside the module accepts the

predicate constraints, solves for satisfiability, and returns “sat” along with the valid assignments

to the variables or “unsat” along with an unsat-core (a set of constraint id). If the counterexample

from SMV2LTS.txt is found valid, the entire program terminates with the output stating that the

system is unsafe and reports the concrete counterexample and the valid assignments. Otherwise

the unsat-core is sent to the Specification Relaxer (e7 in Figure 2.4).

2.4.1.6 Specification Relaxer

Given an unsat-core received from the Path Analyzer, the Specification Relaxer relaxes the cur-

rent specification formula by disjuncting it with the encoding of the unsat-core, using the mapping

information created in the Data Mapper. The relaxed formula is then sent to the Model Builder

(edge 8 in Figure 2.4) to start a new round of iteration. Thereby the edges e5 → e6 → e7 → e8

form a verification loop.

2.4.2 An Illustrative Example

In the Fischer protocol case, assume there are two processes, and that at most one process can

make a location transition at any given time under interleaving semantics [9, 49]. The LhaVrf first

reads the model files then automatically translates each input file into its LHA model Proc i and

stores it in the Data Mapper. Next, all the LHA Proc i are composed to form the concurrent

LHA Proc, and converted to the LTS SProc, from which the abstract model as shown in Figure 2.5

(with unsafe location in shadow) is extracted.

For the specification, Proc 1 and Proc 2 are not allowed to be in the access state at the

same time. More precisely, we have the following LTL specification: G(¬Unsafe), where Unsafe=

A 1 ∧A 2, representing that both Proc 1 and Proc 2 are in the access state at the same time.

www.manaraa.com

25

Figure 2.5: The abstract model for the two-process Fischer protocol

Note in the Fischer protocol case, there exists at most one edge between any pair of loca-

tions, and so any edge can be identified by a unique pair of locations. Therefore, we can ex-

press each counterexample/fragment as a sequence of locations for simplicity. When the param-

eters D1 = 4, D2 = 3, NuSMV generates a counterexample ce = (I 1, I 2)(R 1, I 2)(R 1, R 2)

(R 1, C 2)(R 1, A 2)(C 1, A 2)(A 1, A 2). The set of predicate constraints, that are mapped

to the locations and edges along the counterexample path, is sent to Z3. In this case, Z3 re-

turns “sat” and a valid solution, which means when D1 = 4, D2 = 3, the mutual exclusion is

not guaranteed. On the other hand, when D1 = 2, D2 = 3, NuSMV generates a counterexam-

ple ce = (I 1, I 2)(R 1, I 2)(C 1, I 2)(C 1, R 2) (C 1, C 2)(C 1, A 2)(A 1, A 2). Upon

SMT solving the mapped predicate constraint set, Z3 returns “unsat” and an unsat-core that con-

tains three atomic constraints (n2
v = 1), (n3

u = 0) and (n3
u = n2

v), where a superscript denotes

the step number of the transition in the counterexample. The three constraints are mapped to

jump 1((R 1, C 1)), guard 2((I 2, R 2)) and guard 2((I 2, R 2)) respectively as shown be-

low in bold:

Proc 1 :

Proc 2 :

I 1

I 2

R 1

I 2

C 1

I 2

C 1

R 2

C 1

C 2

C 1

A 2

A 1

A 2

 .

Since the unsat-core doesn’t include the initial condition constraint, its encoding is :

Encode(unsat-core) = (¬Unsafe)U
(
(R 1XC 1)X(I 2XR 2)

)
.

www.manaraa.com

26

Accordingly, the relaxed specification formula for model checking in the next iteration is the dis-

junction of the current specification and the above encoding of the unsat-core:

(
G(¬Unsafe)

)∣∣∣((¬Unsafe)U
(
(R 1XC 1)X(I 2XR 2)

))
,

where “|” denotes the disjunction. The verifier repeats the execution loop as above for twelve

iterations, finally showing that the unsafe state is not reachable. In the case of the 10-process

Fischer mutual exclusion protocol, this corresponds to a space of 410 = ∼1Million locations, and

potentially 10× 5× 49 = ∼13Million edges (due to the user-specified enabling constraints), given

an unsafe state Unsafe= A 1∧A 2, the verifier also proves that the unsafe state is not reachable,

and with almost the same running time as the 2-process case. By symmetry it follows that no other

unsafe state (of the for, A i∧A j, i, j ∈ {1, . . . , 10}, i 6= j, is reachable. One of the counterexamples

is as follows, where as above the unsat-core is shown in bold:

Proc 1 :

Proc 2 :

Proc 3 :

· · · :

Proc 10 :

I 1

I 2

I 3

. . .

I 10

R 1

I 2

I 3

. . .

I 10

C 1

I 2

I 3

. . .

I 10

C 1

R 2

I 3

. . .

I 10

C 1

C 2

I 3

. . .

I 10

C 1

A 2

I 3

. . .

I 10

A 1

A 2

I 3

. . .

I 10

.

The unsat-core and its encoding are identical to the 2-process case. This shows that the algorithm

has extremely good scalability due to the compactness of the unsat-core and its encoding even for

a large state space system.

The constraints in the unsat-core shown above are all on the variable n at different steps, and

the same holds for most of the other counterexamples we obtained. By observation, we know that

n is a discrete finite valued variable with its value updated only on transitions. Thus, instead of

treating n as a flow variable, we can treat it as a discrete state, with a finite set of locations ranging

over the values n can take, with its transitions guarded by events that represent the discrete location

transitions in the concurrent process model that update n. Such a model of n for the k-component

case is shown in Figure 2.6, in which n varies among k + 1 discrete integer values 0, 1, . . . , k.

www.manaraa.com

27

Figure 2.6: Transition system for n

An event set σ(n, n′) (with n, n′ ∈ {0, 1, . . . , k}) associated with an edge in this model can be

derived from the original process model by looking at which discrete transition may cause the value

change of n to n′. An example is the change from 0 to 1 that occurs if and only if when F 1

changes its discrete location from R 1 to C 1. Therefore when k = 2, σ(0, 1) contains 4 valid

events as follows:{(R 1

I 2

C 1

I 2

),(
R 1

R 2

C 1

R 2

),(
R 1

C 2

C 1

C 2

),(
R 1

A 2

C 1

A 2

)}.
Once the discrete transition model for n is created, the predicates over n can be discarded

from each LHA model F i, resulting in simpler LHA models F̃ i. The concurrent model then

is obtained by composing F̃ i, i = 1, . . . , k, and the transition model for n. Figure 2.7 shows

the corresponding abstract model for the two-process case. A counterexample generated from this

new model is given in [9] as: (I 1, I 2, 0) (I 1, R 2, 0)(R 1, R 2, 0)(R 1, C 2, 2)(R 1, A 2, 2)

(C 1, A 2, 1)(A 1, A 2, 1).

Figure 2.7: The new abstract model for Fischer protocol with two processes

www.manaraa.com

28

Since n is no longer a flow variable, all the counterexamples related to n are eliminated. This

reduces the number of iterations dramatically, and the length of the relaxed LTL specification

reduces as a consequence. As a trade-off, the size of the abstract model gets larger (compare

Figure 2.7 versus Figure 2.5). Never the less, since NuSMV has a proven scalability, the overall

time-efficiency of the algorithm is enhanced.

So we can say that in general, if a concurrent linear hybrid system contains a variable that

has finite domain, so it gets updated only along transitions (and not within the locations), then

we can model the behavior of the variable as another transition system, and compose it with the

other subsystems (with the constraints related to the variable suppressed). This corresponds to an

“in-built” refinement of the model that automatically removes many of the invalid counterexample

paths of the original model, and expedites the verification process.

2.4.2.1 Additional Benchmark Experiments

The illustrative example of Fischer protocol illustrated above can be generalized to be modeled

as a timed automaton (TFischer and TFischer 10 in Table 2.1) and were analyzed using our tool.

Additional experimental results on other benchmark examples were also analyzed and reported

here; these were taken from Passel tool website (https://publish.illinois.edu/passel-tool/), including

rectangular Fischers protocol (RFischer), the core component of the Small Aircraft Transportation

System (SATS) landing protocol, and a purely discrete example (TMUX). All the experiments were

performed on a laptop computer with 8G memory and Intel Core @2.30GHz processor. Table 2.1

summarizes performance of the prototype tool LhaVrf on these benchmarks.

Table 2.1: Table of Performance on benchmarks.

Benchmark Safety property Number of iteration. Runtime(sec)

TFishcer 3 12 4.85

TFischer 10 3 12 5.12

RFischer 3 12 5.01

RFischer (Buggy) 7 2 2.15

SATS 3 10 4.99

TMUX 3 6 3.17

www.manaraa.com

29

CHAPTER 3. SIMULATION BASED VERIFICATION OF

BOUNDED-HORIZON SAFETY FOR HYBRID SYSTEM USING

DYNAMIC NUMBER OF SIMULATIONS

3.1 Introduction

Testing and simulation techniques are often used for run-time monitoring of safety-critical sys-

tems such as air-traffic management system, aircraft and automobile control. Such systems are

hybrid, possessing discrete states (also called locations), where different physical laws govern the

evolution of the continuous states, while a set of predicates guard the transitions of the discrete

states and constrain the reset values of the continuous states. However, testing and simulation are

not comprehensive to fully discover system flaws. Alternatively, formal verification methods can be

employed. As decribed in Chapter 2, a common design-time safety verification involves computing

the reachable set over-approximation symbolically, and checking whether the over-approximation

does not reach the unsafe region [9, 10, 12, 19, 20, 27, 36, 50]. In contrast, the alternative simulation-

based verification approach, that can be applied in run-time, generates a finite set of simulation

traces from current system states, then computes over-approximation sets around those simulation

trajectories to cover for the infinite set of cases that were not simulated [51, 52, 53, 54, 55]. The

computation of the over-approximation sets relies on certain continuity properties.

The reachable set is usually non-convex and hard to compute precisely, and so those are typically

over-approximated using certain easy-to-compute representations. Examples are support function in

SpaceEx [27], Taylor model in Flow* [36], polyhedra/balls in C2E2 [53, 54, 55], and zonotope in CORA

[56, 57]. In SpaceEx and Flow*, the reachable set over-approximation of a set S over each time-step

is performed directly on S using symbolic representation and one-step evolution’s approximated

post-image formulas, and implemented through support function or Taylor Model. This introduces

additional errors when computing discrete post-images, due to a lack of compatibility between the

www.manaraa.com

30

reachable state representation in continuous stage vs. guard/reset representation used for discrete

transition (e.g. a hyperplane). This calls for representation conversion, which requires adoption

of additional over-approximation, when connecting two consecutive stages of continuous evolution.

Tools that require representation conversion usually do not perform well on models with frequent

discrete jumps.

In contrast, in a bounded horizon verification from simulation approach, the correctness is

established from multiple simulation runs of the system, and over-approximating tubes around

those, whose initial face covers the entire initial set. Over time, the scope of study has expanded

from continuous linear dynamics [51, 52] to those described by a richer class of hybrid nonlinear ones

[53, 54, 55]. In [53], authors presented a framework that formally verifies the bounded time safety

of a subclass of hybrid nonlinear systems, the so called switched systems. A switched system has

time-triggered mode changes, determined by pre-specified switching signals indicating the switching

times and destination locations. In contrast, a general hybrid system changes its discrete mode

autonomously as determined from the guard predicates over states, and the sequence of discrete

mode switches are not known a priori. A contribution in our work is to develop the simulation-based

verification approach for this general class of hybrid dynamics.

In prior works, a simulation of entire time horizon is used as a reference or representative for

a class of system behaviors starting close to the reference. Discrepancy functions [58, 59] are used

to bound the state deviation from neighboring non-reference states. In [53], the use of discrepancy

function requires users to provide control theoretic annotations on the dynamics. Moreover, the

algorithms in [53] are based upon two assumptions on the hybrid systems, namely, (i) state resets

are not allowed, and (ii) the executions starting from the same class of initial states/inputs must

all experience the same discrete behaviors [54, 55]. Both assumptions are restrictive, e.g., the first

assumption does not hold for a simple bouncing ball. On the other hand, for a general hybrid

system, a simulation error may cause a deviation in the result of discrete-jump, violating the

second assumption above. Once a location deviation occurs, the original simulation is no longer

a reliable estimate, meaning that a simulation of the entire time horizon may not always qualify

www.manaraa.com

31

as a reliable reference. In addition, determining a finite set of representative initial states, that

represent executions that visit the same sequence of discrete locations within a given time horizon,

is not yet proven to be computable. Here, we proposed a simulation-based verification algorithm

for bounded-time safety that can deal with general nonlinear hybrid systems, while relaxing the

aforementioned assumptions, and also bypassing the computability issue of the representative set

of initial states, by way of their dynamic, on-the-fly, and as-needed computation.

A key concept in the simulation-based approaches is the discrepancy function that is used for

bounding the deviation between two neighboring trajectories as a function of their initial distance

and time. [53] has shown that some proof certificates routinely used in stability analysis of dynam-

ical systems are in fact discrepancy functions. For example, Lipschitz property of a flow function

lends an exponentially growing bound among the system trajectories. On the other hand, incre-

mental stability of a system specifies that the distance between two trajectories remains bounded by

a KL function of their initial distance and time. An even stronger property exists for system with

a contraction metric, whose trajectories converge exponentially with time. In [60], under the as-

sumptions ensuring incremental stability of a switched system, it is possible to construct a symbolic

model that is approximately bisimilar to the original switched system with a precision that can be

chosen a priori. Algorithmic controller syndissertation then can be applied on the symbolic model,

which is supposedly easier to handle than the original model. In the simulation-based reachability

verification, discrepancy functions based on the KL function, are shown to be able to diminish the

over-approximation error bound [53]. However, simply assuming the incremental stability is not

enough, one has to actually obtain a KL discrepancy function prior to a computation based on it.

As [53] pointed out, obtaining such a bounded relationship among trajectories is computationally

intractable in general. Aside from using better discrepancy functions, several other heuristic tech-

niques such as using localized exponential discrepancy functions during each time interval, have

been adopted by C2E2 to slow down the error growth [23, 24, 38]. In this chapter, we have developed

a practical approach that bypasses the intractable pre-verification analysis of finding a KL func-

tion if it exists, uses the easily computable Lipschitz constant based discrepancy function, yet also

www.manaraa.com

32

alleviates the fast growth of over-approximation errors for stable systems. Lipschitz constants can

be computed algorithmically for linear, polynomial, and certain classes of trigonometric functions.

For more general classes, empirical techniques can estimate it over closed subsets [61].

Briefly, in our approach, the bounded initial set is covered by a partition whose cells are γ-

hypercubes (so distance from center of hypercube to a side is γ, and where γ is a user-defined

partition size parameter). The center of a hypercube is chosen as its representative state. Each

such representative state is forward simulated in discrete time-steps of user chosen intervals, and

the corresponding error is tracked using a bound. After a finite number of time-steps (which is

another user-defined parameter), the states reached at the current final time are covered by a new

partition with cells that are again γ-hypercubes. Also, when a discrete jump occurs, the newly

reached states after the jump are again covered by a partition with γ-hypercubes cells. Upon each

such partition, the process of selecting the representative states, one per cell, and their forward

simulations, continues, until the required time for forward simulation bound is elapsed. We refer

to this type of on-the-fly partitioning as “dynamic partitioning”. In this way, the exponential

error growth among trajectories remains confined to short time-intervals, as opposed to the entire

simulation horizon. As a result, the over-approximation bounds evolve at a much less growth

rate (or even at a decaying rate for the case of converging trajectories). We have proven that,

for incremental (input-to-state) stable dynamics, the two growth trends culminate into a bounded

deviation, which can be made arbitrarily small with the choice of simulation/partition parameters.

This boundedness of the trajectory deviation estimation using only a Lipschitz constant based

discrepancy function, is a novel feature of our approach. This makes our approach practical since a

Lipschitz-based discrepancy function is easily computable, while a more precise discrepancy function

may not be available since there is no known algorithm to compute it in general. (Certainly if a

more precise discrepancy function is available, our algorithm can also utilize it.) Our contributions

are summarized as follows:

• Our dynamic partitioning approach supports state-triggered discrete jumps with guard/reset

conditions. Errors in simulation can alter discrete behaviors rendering a simulation-trace

www.manaraa.com

33

obsolete, when state-triggered discrete transitions are allowed. Our approach circumvents

this problem by introducing new simulations as needed, and on-the-fly.

• Our dynamic partitioning scheme controls the error growth of over-approximation, so that

even for a Lipschitz constant based discrepancy function, it guarantees that the error converges

to a constant bound for incremental stable systems.

• This guarantees that the number of representative simulations also converge for an incremental

stable system, and in fact may become smaller in number as forward simulations are carried

out.

• Our approach relies on discrepancy function based on Lipschitz constant, that is easy to

compute in practice, without sacrificing accuracy due to our use of dynamic partitioning.

More precise discrepancy function are not practically computable – their computation may

even be undecidable. But those can be used in our approach if available.

• Our approach allows piecewise constant bounded inputs.

• Our approach only partitions the “reachability boundary” that reduces the number of repre-

sentative simulations while maintaining verification correctness.

• We have implemented a prototype verifier HS3V incorporating our innovations, and have tested

an compared it on a variety of benchmarks.

This chapter extends the conference version [39] in multiple ways. Firstly, a new section on

error growth control is added, explaining the dynamic partitioning scheme, providing a correctness

theorem and its corollaries regarding the boundedness of trajectory deviation errors, and discussing

its novelty and benefits. Secondly, we updated the tool HS3V implementing the above new ideas.

Lastly, more experimental results are presented to show the improvement of the error growth control

for both continuous and hybrid dynamic evolution.

Rest of the chapter is organized as follows. Notations and preliminaries are given in Section 3.2.

The stepwise computation of the reachable set over-approximation regarding continuous evolution

is described in Section 3.3. The dynamic partitioning scheme for error growth control is given in

Section 3.4. The complete algorithm is in Section 3.5. The implementation of our prototype tool

and experimental results for several benchmarks are given in Section 3.6.

www.manaraa.com

34

3.2 Notation and Preliminary

For a vector ~v ∈ Rn, the notation ‖~v‖ denotes its `∞ norm. The diameter of a bounded set S

of a metric space is denoted as D(S) = sup{‖~v − ~v′‖|~v,~v′ ∈ S}. Bγ(~v) = {~v′|‖~v′ − ~v‖ ≤ γ} denotes

the γ-hypercube centered at ~v. The Minkowski sum of two sets S and S′ in a vector space is defined

as S ⊕ S′ = {~v + ~v′|~v ∈ S1, ~v
′ ∈ S′}. A continuous function f : [0, a) 7→ R≥0 is a class K function

if it is strictly increasing and f(0) = 0. It is said to belong to class K∞ if it is defined on R≥0 and

f(s) goes to∞ as s goes to∞. A function f : [0, a)×R≥0 7→ R≥0 is a class KL function if, for each

fixed t, the function f(·, t) belongs to class K; for each fixed s, the function f(s, t) is decreasing and

approaches to 0 as t goes to ∞. A function f : Rn 7→ R is Lipschitz if there exists a constant c > 0

such that ‖f(x) − f(x′)‖ ≤ c‖x − x′‖ for all x, x′ in the domain of f . A matrix is called Hurwitz

when all its eigenvalues have non-negative real parts.

In this chapter, we analyze a class of deterministic hybrid automata in which the continuous

dynamics have piecewise constant bounded inputs. The following definition is a simplified version

of the standard definition of input-output hybrid automaton (I/O HA) from [11]; the invariant,

guard, and reset conditions only depend on states.

Definition 4. A hybrid automaton with inputs is a tuple A = (L, V,E, V0, U, flow, inv, guard, reset),

where:

• Discrete state: L is a finite set of discrete locations.

• Continuous state: V = {v(1), v(2), . . . , v(n)} is a finite set of real-valued state variables.

~v = [v(1), v(2), . . . , v(n)] is their vector representation.

• Discrete jumps: E ⊆ L× L is the set of discrete jumps.

• Initial state set: V0 ⊂ Rn is the nonempty bounded initial state set (initial set for short).

• Continuous Input: U = {u(1), u(2), . . . , u(m)} is a finite set of real-valued input variables.

Let ~u(i)(t) : R≥0 7→ R be a piecewise continuous bounded function of t, that describes the

value of u(i) changing over time. ~u = [u(1), u(2), . . . , u(m)] is the vector representation of input

variables and ~u(t) is defined analogously.

www.manaraa.com

35

• Flow: The flow function flow assigns each location l ∈ L a differential equation flow(l) :

~̇v = fl(~v, ~u) where fl : Rn×Rm 7→ R
n constrains the rates at which the variables change w.r.t.

time.

• Invariant: The invariant function inv assigns each location l ∈ L a predicate inv(l) ⊆ R
n

over the domain of ~v that constrains the values of the variables within the location l.

• Guard: The guard function guard assigns each discrete jump e = (l, l′) ∈ E a predicate

guard(e) over the domain of ~v such that the jump e is enabled at a state ~v ∈ inv(l) if and

only if ~v ∈ guard(e).

• Reset: The reset function reset assigns each discrete jump e = (l, l′) ∈ E a function resete

over the domain of ~v such that the jump e enabled at state ~v ∈ inv(l) is accompanied with a

value reset: ~v′ = resete(~v) ∈ inv(l′). Define resete(S) = {~v′|∃~v ∈ S,~v′ = resete(~v)}.

In our study, we make the following assumptions:

• Piecewise constant bounded input: We assume that the input u(t) for each initial state

is a piecewise constant function, where the discrete changes occur only at the simulation

sample times. In other words, ∀t ≥ 0, ~u(t) ∈ Bru(~u0̃(t)), with ~u0̃(t) is a piecewise constant

function representing nominal input and ru ∈ R≥0.

• Linear guard predicate: The guard predicates are linear, each representing a hyperplane

in Rn. This assumption is mainly for the ease of computation of the intersection between the

polyhedral representation of the reachable set and the guards. The guard predicates can be

taken to be more general semi-algebraic sets, if performing the set operations based on the

the cylindrical algebraic decomposition [62].

• Affine reset function: The reset functions are affine. This again is more of computational

simplicity, as affine maps preserve polyhedral sets.

• Lipschitz continuity: For each l ∈ L, the flow function fl is Lipschitz in ~v and ~u with

Lipschitz constant cl.

• Simulation time-step can be chosen smaller than dwell-time: By dwell-time, we refer

to the time spent while evolving within a single location. We assume the system possesses a

www.manaraa.com

36

minimum dwell-time ∆ > 0 over the duration of simulation horizon, so that we can pick a

simulation time-step δ < ∆ to avoid multiple discrete jumps in a single time-step.

Given a hybrid automaton A as defined in Definition 4 satisfying the above assumptions, we

have the following definitions regarding its behavior and simulation.

Definition 5. A trajectory of A, denoted by τ , is a bounded-time continuous evolution of the state

inside a discrete location. Specifically, τ is a function, τ : [0, T] 7→ inv(l), where T ∈ R>0 and l ∈ L.

We denote the trajectory from state ~v0 ∈ inv(l) with input signal ~u0(t) as τ~v0,~u0(t). τ~v0,~u0(t)(t) is

the solution of the flow differential equation ~̇v = fl(~v, ~u), with fl : Rn × Rm 7→ R
n, initial state ~v0

and input signal ~u0(t). The Lipschitz continuity assumption ensures the existence and uniqueness

of the trajectory for all initial states and inputs.

Definition 6. A simulation trajectory of A, is a sequence of state-time pairs, obtained by simulation

using numerical algorithms, that estimates the continuous variables at discrete time instances. For

a location l ∈ L, initial state ~v0 ∈ inv(l), input signal ~u0(t), sample time-step δ > 0, single time-

step simulation error ε > 0 and time bound T , a (~v0, ~u0(t), δ, ε, T)-simulation trajectory is a finite

sequence (~v0, 0)(~v1, δ) . . . (~vk, kδ), where k = dT/δe, and

• ∀i ∈ {0, . . . , k}, ~vi ∈ inv(l).

• ∀i ∈ {1, . . . , k}, ‖~vi − τ~vi−1,~u0(t+(i−1)δ)(δ)‖ ≤ ε.

Definition 7. An execution of A, denoted by α, is a finite sequence of trajectories concatenated

via discrete jumps. A finite sequence τ0e1τ1 . . . ekτk is an execution of A if it satisfies the following

• Initial condition τ0(0) ∈ V0.

• ∀i ∈ {0, . . . , k}, τi : [0, Ti] 7→ inv(li), is a trajectory.

• ∀i ∈ {1, . . . , k}, ei = (li−1, li) ∈ E, τi−1(Ti−1) ∈ guard(ei).

• ∀i ∈ {1, . . . , k}, τi(0) = resetei(τi−1(Ti−1))

A state ~v∗ ∈ Rn is reachable in bounded time T , if and only if there exist an execution α =

τ0e1τ1 . . . ekτk such that τk(Tk) = ~v∗ and Σk
i=0Ti ≤ T .

www.manaraa.com

37

3.3 Reachable Tube Computation

3.3.1 Error Growth in Continuous Evolution

A tube constructed around a trajectory τ according to the discrepancy function of the location

dynamics contains all the trajectories starting in a neighborhood of τ(0), and in which case τ

is referred to as a reference trajectory. In a simulation-based bounded-horizon safety verification

approach, we can use the simulation trajectory starting from τ(0) to approximate the reference

trajectory τ , by accounting for the simulation error bound.

Consider a reference trajectory τ~v0,~u0(t) over [0, T] in l and a neighboring trajectory τ~v′0,~u′0(t) also

in l, where ‖~v′0 − ~v0‖ ≤ rv and ‖~u′0(t) − ~u0(t)‖ ≤ ru for all t ∈ [0, T]. Let (~v0, 0) . . . (~vk, kδ) be

the (~v0, ~u0(t), δ, ε, T)-simulation trajectory, and {γli = ‖τ~v′0,~u′0(t)(iδ)− ~vk‖}ki=0 denote the collection

of the `∞ distances between τ~v′0,~u′0(t) (the actual trajectory) versus the simulation trajectory at

the sample times. By definition, τ~v0,~u0(t), τ~v′0,~u′0(t) and the simulation trajectory follow the same

continuous dynamics flow(l). Then we have the following proposition [39], which can be derived

from Lemma 1 in [54] but with extension to also include the inputs. For an unforced system (i.e.,

with zero input), Proposition 1 reduces to Lemma 1 in [54].

Proposition 1. Consider the notation in the paragraph above. Then,

γl0 = ‖~v′0 − ~v0‖ ≤ rv, and ∀i ∈ {1, . . . , i}, γli ≤ γli−1e
clδ + ruδ(e

clδ − 1) + ε,

where cl is the Lipschitz constant for flow(l), δ is the simulation time-step, and ε is the single

time-step simulation error.

The sequence {γli}ki=0 is restricted by the recursive inequalities given in Proposition 1. The

unique sequence that satisfies the equality at each recursion gives the most precise upper bounds of

the distances between τ~v′0,~u′0(t) and the (~v0, ~u0(t), δ, ε, T)-simulation trajectory at the sample times.

This unique sequence, denoted by {γl
i
}ki=0, is useful since for most nonlinear dynamics, an analytical

solution is not available. Figure 3.1(a) shows a fragment of τ~v′0,~u′0(t) marked by the blue curve and

a (~v0, ~u0(t), δ, ε, T)-simulation trajectory with its simulation values marked by the green dots. The

error at the ith simulation time-step is bounded by γl
i
.

www.manaraa.com

38

(a) (b)

Figure 3.1: (a) A two time-step fragment of τ~v′0,~u′0(t) and (~v0, ~u0(t), δ, ε, T)-simulation trajectory,

{γl
i
}ki=0 are computed by Proposition 1. (b) The first two time-steps of solving the equation

ẋ = t − 1/(1 + x) with x(0)=1 and δ = 0.5 numerically. The dashed curve shows the trajectory,
the dots show the simulation values, while the solid curves show the parabolas that are used to
compute the simulation. Figure 3.1(b) is taken from [63].

In the context of hybrid dynamics that allows state-triggered discrete jumps, it is not always

possible to treat a sequence of state-time pairs obtained by a simulation engine as a reliable simu-

lation trajectory. A simulation error may cause a discrete evolution to deviate, making the forward

simulation unreliable. For this reason, we cannot use simulations over the entire time horizon to es-

timate the hybrid executions. To ensure that every simulation state-time pair is a reliable estimate

of the actual behavior, the simulation is examined at the end of each time-step, to check whether

the accumulated simulation error can cause a discrete location deviation. For this, we examine

each error bound to see if any discrete jump can be triggered at the end of any time-step. The

handling of the possible discrete jumps is described in Section 3.5, and integrated into the overall

reachability over-approximation algorithm.

3.3.2 Reachable Set in a Single Time-Step

Consider the group of trajectories with initial discrete location l ∈ L, initial states in Brv(~v0),

and input signals in Bru(~u0(t)) over [0, T]. We construct a tube that contains all this group of

trajectories around the (~v0, ~u0(t), δ, ε, T)-simulation trajectory, (~v0, 0) . . . (~vk, kδ), where recall that

k = dT/δe by Definition 6. The tube segments are computed for each time-step using Algorithm 3,

which extends the one in [54] to also allow inputs.

www.manaraa.com

39

Algorithm 3: Building tube segment during [iδ, (i+ 1)δ].

Input: A, l, ~v0, ~u0(t), ru, δ, γ
l
i
, b ∈ R>1.

1 ~vi ← simu(~v0, ~u0(t), i), σ ← γl
i
;

2 do

3 σ ← b · σ;

4 d = sup~v∈Bσ(~vi),~u∈Bru (~u0(iδ))‖fl(~v, ~u)‖;
5 while σ − dδ < γl

i
;

6 f = sup~v∈Bσ(~vi),~u∈Bru (~u0(iδ)) fl(~v, ~u);

7 f = inf~v∈Bσ(~vi),~u∈Bru (~u0(iδ)) fl(~v, ~u);

8 Rl[i,i+1](~v0, ~u0(t)) = Bγl
i
(~vi)⊕ {t · f |t ∈ [0, δ], f ∈ [f, f]};

Output: Rl[i,i+1](~v0, ~u0(t))

Input to Algorithm 3 includes a system model A, a particular location l where the continuous

evolution occurs, simulation starting point ~v0, input signal ~u0(t), input range parameter ru, simu-

lation time-step δ, the error bound γl
i

computed using Propositional 1, and a constant gain factor

b > 1. In line 1, simu(~v0, ~u0(t), i) returns the simulation value ~vi at time iδ with initial value ~v0

and input signal ~u0(t); σ is a constant that defines the σ-hypercube Bσ(~vi) (in Figure 3.2 it is the

area marked by the dashed square) a conservative over-approximation of the one-step reachability

of Bγl
i
(~vi) (in Figure 3.2 it is the area marked by the solid square centered at ~vi).

Figure 3.2: A 2-dimensional tube segment over the time-step [iδ, (i + 1)δ] (marked by the red
shadowed area). Bγl

i
(~vi) is the over-approximation of the reachable set at time instant iδ. Note

{γl
i
}ki=0 only bound the trajectory deviations at the sample times, and so the convex hull of Bγl

i
(~vi)

and Bγl
i+1

(~vi+1) doesn’t necessarily over-approximate the reachable set in between iδ and (i+ 1)δ

due to the nonlinearity of the continuous dynamics. Hence the red shadowed area can be larger
than the said convex hull.

www.manaraa.com

40

The final choice of σ is obtained by repeatedly scaling itself by b starting with the initial value

γl
i

until the criteria in line 5 of Algorithm 3 is satisfied. The value of b is chosen by considering a

trade-off between the precision versus the number of iterations. In practice, b is set between 1.1 and

2.5, and the default value is set to 2 in our implementation. [54] has proved that cl ·δ < 1, then this

loop will indeed terminate. In lines 6-7, the element-wise maximum and minimum changing rates

of ~v in Bσ(~vi), denoted by f and f respectively, are computed by solving an optimization problem

over fl. In line 4, d is computed analogously. Line 8 defines the tube segment as Rl[i,i+1](~v0, ~u0(t)),

which is the Minkowski sum of Bγl
i
(~vi) and its evolution in one time-step. The correctness of

Algorithm 3 immediately follows the correctness of Proposition 1 (proved in [39]) and Algorithm 1

in [54]. (For the case of a discrete jump within a time-step, visit Section 3.5 below.)

3.4 Error Growth Control

From Proposition 1, the error bound based on the Lipschitz constant can be seen to grow

exponentially. In this section, we introduce a dynamic partitioning scheme to alleviate the error

growth problem, without having to introduce a discrepancy function that is more precise than the

one based on Lipschitz constant. Note the motivation for doing so was discussed in introduction,

namely, that only the latter is tractably computable. We also show that for an incremental (input-

to-state) stable system, our approach provides a constant error bound in the limit, even though

we continue to utilize Lipschitz continuity based error bound that is practically computable (in

contrast to a more precise bound, based for example an incremental stability property, that may

not even be available; our approach can certainly also use the precise bound when available).

Consider a location l ∈ L of a hybrid automaton A with the flow dynamics

~̇v = fl(~v, ~u), (3.1)

with fl Lipschitz in ~v ∈ R
n and ~u ∈ R

m. Assuming no discrete jump, we propose Algorithm 4

to compute the reachable set over-approximation under continuous evolution within l starting

within the rv-hypercube Brv(~v0), under input signal ~u(t) ∈ Bru(~u0(t)), and over time bound T .

We assume here for simplicity of illustration that there is no discrete evolution; the more general

www.manaraa.com

41

case is discussed in the next section. Algorithm 4 periodically repartitions the states reached at

the end of a certain number of user-selected time-steps, still using the rv-hypercube cells. This

repartitioning “interrupts” the exponential growth of trajectory error bound of Proposition 1, and

in fact leads to a bounded error in case of incremental (input-to-output) stable systems.

Algorithm 4: Multiple time-steps computation of the reachable set in location l starting
from a single hypercube in bounded time with dynamic partitioning.

Input: A, l, ~v0, ~u0(t), rv, ru, {γj}
m
j=0, δ, T,m ∈ R>0.

1 Rl ← Brv(~v0), C l ← {~v0};
2 for i = 0; i < dT/δe; i+ + do

3 Rl ← Rl ∪
⋃
~v∈Cl R

l
[i,i+1](~v, ~u0(t));

4 if (i > 0) ∧ (i%m = 0) then

5 C l ←Partition(
⋃
~v∈Cl Bγl

m
(~vm), rv)

6 end

7 end

Output: Rl

Theorem 3. Algorithm 4 is sound: ∀~v ∈ Brv(~v0), ∀t ∈ [0, T], ∀~u(t) ∈ Bru(~u0(t)), τ~v,~u(t)(t) ∈ Rl.

Proof. In Algorithm 4, for k = 0, 1, . . . , bT/(mδ)c, C l is unchanged in between kmδ and (k+ 1)mδ,

and let it be denoted by C lk. From Propositional 1,
⋃
~v∈Clk

Bγl
m

(~vm) over-approximates the set

of states reached from
⋃
~v∈Clk

Brv(~v) at the final time mδ of m time-steps, i.e., ∀~v ∈ Brv(~v0),

∀~u(t) ∈ Bru(~u0(t)), ∀k ∈ [0, bT/(mδ)c − 1]:

τ~v,~u(t)(kmδ) ∈
⋃
~v∈Clk

Brv(~v) =⇒ τ~v,~u(t)((k + 1)mδ) ∈
⋃
~v∈Clk

Bγl
m

(~vm) ⊆
⋃

~v∈Ck+1

Brv(~v).

This is equivalent to saying that, τ~v,~u(t)(kmδ) is covered by C lk for any k ∈ [0, bT/(mδ)c]. Conse-

quently, there exists a tube segment within [kmδ, (k + 1)mδ] that contains τ~v,~u(t)(t).

Rl is the union of all tube segments in [0, dT/δe · δ]. Thus, ∀t ∈ [0, T], τ~v,~u(t)(t) ∈ Rl.

For k ∈ [1, bT/(mδ)c], let Rlkm =
⋃
~v∈Clk−1

Bγl
m

(~vm) be the reachable set over-approximation

at time-step km. Accordingly, let ek = D(Rlkm) be the diameter of Rlkm. Figure 3.3 depicts

the error growth over the first 2m time-steps. Algorithm 4 attains notably good results for the

www.manaraa.com

42

bounds {ek}
bT/(mδ)c
k=1 compared to what would be obtained by simply Algorithm 3, without the

repartitioning introduced in Algorithm 4.

Figure 3.3: Error growth from an rv-hypercube. Trajectory deviation bound between partitions
grows exponentially, while distance among tubes (measured by the distance among simulation
values at the sample times, such as d2 in this figure) grows slower or even diminishes.

3.4.1 Effect of Stability Property on Error Growth

A nice feature of Algorithm 4 is that when the underlying dynamics converges over time, so does

the error bound of over-approximation computed by the algorithm. We first introduce a notion of

converging dynamics.

Definition 8. Dynamics (3.1) is incremental input-to-state stable (δ-ISS for short) [64] if there

exist a KL function β and a function γ ∈ K∞ such that for any t ≥ 0, any ~v,~v′ ∈ Rn, and any pair

of bounded input signals ~u(t), ~u′(t), the following holds:

‖τ~v,~u(t)(t)− τ~v′,~u′(t)(t)‖ ≤ β(‖~v − ~v′‖, t) + γ(sup
0≤ξ≤t

‖~u(ξ)− ~u′(ξ)‖).

The KL function β(‖~v−~v′‖, t) is decreasing and goes to 0 as t goes to∞, whereas the bounded

input difference gives rise to a bounded trajectory deviation.

In Algorithm 4, partitions are updated at every m time-steps, and ek = D(Rlkm) is the diameter

of the reachable set over-approximation at time-step km. We establish the following Theorem:

Theorem 4. For flow(l) that is δ-ISS, ∃c ∈ Z+ such that ∀m ≥ c, the over-approximation error

sequence {ek}
bT/(mδ)c
k=1 has a constant bound under Algorithm 4.

www.manaraa.com

43

Proof. During the first m time-steps, the initial tube grows exponentially per Proposition 1. Hence,

we have e1 = 2γl
m

. When k ≥ 1, at time-step km, the set of representative states of Rlkm is used

as the simulation starting point set C lk. Since γl
m
> γl

0
= rv, we know D(Rlkm) > rv. Hence the

representative set of Rlkm (equivalently, C lk) contains at least two elements. Suppose τa, τb are two

reference trajectories within [kmδ, (k + 1)mδ] starting from ~va0, ~vb0 ∈ C lk. Due to partitioning,

max
~va,~vb∈Clk

(‖~va − ~vb‖) ≤ ek.

By Definition 8, for some β ∈ KL and γ ∈ K∞,

‖τa(mδ)− τb(mδ)‖ ≤ β(‖~va − ~vb‖,mδ) + γ(ru).

Let dk+1 denote the maximum `∞ distance between any two simulation values at time (k + 1)mδ

before partition (see for example d2 in Figure 3.3). Due to the simulation error, there exists deviation

between a reference trajectory and the corresponding simulation trajectory. Let γl
ε

denote the bound

on their deviation at time-step m. Since the two start at the same state, γl
ε

can be computed by

Proposition 1, using a base value 0 and m recursive equalities. Combining all factors, we have:

dk+1 ≤ β(ek,mδ) + γ(ru) + 2γl
ε
.

Since β is decreasing and goes to 0 as t goes to ∞, we can pick some constant q ∈ (0, 1), ∃c ∈ Z+

such that ∀m ≥ c, β(ek,mδ) ≤ qek. Then, dk+1 ≤ qek + γ(ru) + 2γl
ε
.

By definition, ek+1 = dk+1 + 2γl
m

. Thus,

ek+1 ≤ qek + γ(ru) + 2γl
ε

+ 2γl
m
. (3.2)

Recursively applying (3.2) from k = 1 (with e1 = γl
m

), we have:

ek+1 ≤
(
γ(ru) + 2γl

m
+ 2γl

ε

) k∑
i=0

qi − qk
(
γ(ru) + 2γl

ε

)
,

the right hand side of which contains a sum of the geometric series with sum equal to 1
1−q , and a

negative term that approaches to 0 as k approaches ∞. So we have that

lim
k→∞

ek =
γ(ru) + 2γl

m
+ 2γl

ε

1− q
, (3.3)

that serves as a constant bound for the errors {ek}
bT/(mδ)c
k=1 .

www.manaraa.com

44

Next we consider the special case of the unforced version of dynamics (3.1) with ~u(t) = 0,

namely,

~̇v = fl(~v, 0), (3.4)

where fl is locally Lipschitz in ~v ∈ Rn. Then similar to Definition 8, we have:

Definition 9. Dynamics (3.4) is incremental globally asymptotically stable (δ-GAS for short) or

incremental stable [64, 65] if there exists a function β ∈ KL so that for any t ≥ 0 and any ~v,~v′ ∈ Rn

the following holds:

‖τ~v,0(t)− τ~v′,0(t)‖ ≤ β(‖~v − ~v′‖, t).

By comparing Definition 9 with Definition 8, and replacing γ(ru) with 0 all throughout the

proof of Theorem 3, we can obtain the following corollary:

Corollary 4.1. For unforced flow(l) that is δ-GAS, ∃c ∈ Z+, ∀m ≥ c such that the over-

approximation error sequence {ek}
bT/(mδ)c
k=1 has a constant bound under Algorithm 4, given by:

lim
k→∞

ek =
2(γl

m
+ γl

ε
)

1− q
. (3.5)

Now consider the special case of a stable LTI system. For such a system ~̇v = A~v + B~u with

Hurwitz matrix A, we can easily identify the associated KL function β and K∞ function γ by taking

advantage of its explicit solution:

~v(t) = eAt~v(0) +

∫ t

0
eA(t−ξ)B~u(ξ)dξ,

and use the bound ‖eAt‖ ≤ ke−λt, ∀t ≥ 0 for some k, λ > 0. Therefore, for any ~v,~v′ ∈ Rn and any

pair of bounded input signals ~u(t), ~u′(t),

‖τ~v,~u(t)(t)− τ~v′,~u′(t)(t)‖ = ‖eAt(~v − ~v′)‖+

∫ t

0
eA(t−ξ)‖B(~u(ξ)− ~u′(ξ))‖dξ

≤ ke−λt‖~v − ~v′‖+

∫ t

0
ke−λ(t−ξ)‖B(~u(ξ)− ~u′(ξ))‖dξ

≤ ke−λt‖~v − ~v′‖+
k‖B‖
λ

sup
0≤ξ≤t

‖~u(ξ)− ~u′(ξ)‖.

This not only shows the δ-ISS property of the above system, but also an exponential decay of the

deviation of the unforced trajectories. Consequently, we can have the following corollary:

www.manaraa.com

45

Corollary 4.2. For an LTI dynamics ~̇v = A~v + B~u with A Hurwitz, ∃c ∈ Z+ such that ∀m ≥ c,

the over-approximation error sequence {ek}
bT/(mδ)c
k=1 has a constant bound under Algorithm 4.

Remark 3. Once a constant bound on the over-approximation error sequence {ek}
bT/(mδ)c
k=1 is

guaranteed, then the number of simulation trajectories is bounded. So consider replacing input

{~v0} with a non-singleton representative set of initial states in Algorithm 4. Then we will have

e1 ≤ qD(V0) + γ(ru) + 2γl
ε

+ 2γl
m

. Using this as the initial value for the sequence {ek}
bT/(mδ)c
k=1 , we

can have

ek ≤
(
γ(ru) + 2γl

m
+ 2γl

ε

) k∑
i=0

qi + qkD(V0). (3.6)

On the right hand side of (3.6), the second term decays as long as D(V0) is bounded, regardless of

its size. Thus, the sequence {ek}
bT/(mδ)c
k=1 converges to the same value as in (3.3), regardless of the

diameter of the bounded set V0, as summarized in the following corollary.

Corollary 4.3. For dynamics of δ-ISS or δ-GAS property, ∃c ∈ Z+ such that ∀m ≥ c, the over-

approximation error sequence {ek}
bT/(mδ)c
k=1 converges to the same value as in (3.3) under Algorithm 4

for any bounded initial set V0.

Remark 4. In (3.5), γl
m

, γl
ε
, and hence ek, can be made arbitrarily small, by choosing sufficiently

small partition and simulation parameters rv, ε, and δ. While the constant error bound is achieved

regardless of the choices of these parameters, improving those can help to get a smaller constant

bound. On the other hand, while smaller m is, smaller γl
m

and γl
ε

become, yet a small m may not

guarantee the trajectory convergence. This is because for a small m, the condition q < 1 in (3.2)

may not hold. In implementation, m is given a default value by rule-of-thumb if not user-specified.

Remark 5. In (3.3), a sufficiently small ru also makes γ(ru) sufficiently small. In this chapter

we focus on the partitions of the state set, we have fixed ru as for our algorithms for simplicity.

Theoretically, a bounded range of inputs can also be partitioned into smaller subranges, with the

assumption of piecewise constant inputs remaining intact. Then for each input subrange, we can

compute as in Algorithm 4, and perform union of the over-approximation state sets thus computed.

www.manaraa.com

46

3.4.2 Benefits from Dynamic Partitions

The main advantage of the dynamic partitioning scheme adopted by Algorithm 4 is that it

keeps the error growth under control while using only a Lipschitz-based discrepancy function,

that can be practically computed. (In contrast, there is no low complexity technique to obtain

a more precise discrepancy function, but if it is available, our Algorithm 4 can certainly also use

it.) Theorem 4 and its corollaries in section 3.4 show that Algorithm 4 achieves constant error

bound in case of stable dynamics, without requiring the β and γ functions of Definitions 8 and 9.

Thus Algorithm 4 provides an approach for simulation-based reachability analysis, even when the

specialized discrepancy functions are not provided.

A consequence of dynamic partitioning is that, the number of simulation trajectories in Algo-

rithm 4 is dynamic and decided in run-time, running only as many simulations as necessary, and

this number can even reduce. This number is related to the size of the error, and if that decreases

(as for example in case of a convergent system), then the number of simulation runs also decreases.

Corollary 4.3 suggests that, the error sequence approaches a constant value implying that the num-

ber of simulation trajectories become constant, and in fact may be smaller than the initial number.

Thus, the analysis can even speed up and eventually settle down.

3.5 The Overall Algorithm

Algorithm 4 is extended to obtain the overall Algorithm 5 for the reachability over-approximation

of a hybrid automaton A in a bounded time T , with partition parameter rv, simulation time-step δ,

the repartition time-step period number m, piecewise bounded input signal ~u(t) ∈ Bru(~u0(t)) with

its nominal piecewise constant input signal ~u0(t), and simulation time-step δ. W.l.o.g., we assume

the initial discrete location to be l0 and the initial continuous states V0 ⊆ inv(l0).

In line 1, Rl is the overall reachable set over-approximation within discrete mode l that is

forward simulated as in Algorithm 3; Lre is the over-approximation of the reachable location set;

C l is the set of representative states in Rl. The loop over lines 2-28 expands Algorithm 4 to account

for concurrent continuous evolution in multiple locations, as well as the state-triggered discrete

www.manaraa.com

47

Algorithm 5: Multi-step computation of the bounded-time reachable location/state set
over-approximation for general hybrid automaton.

Input: A = (L, V,E, V0, U, flow, inv, guard, reset), l0, rv, ru, ~u0(t), T,m, δ.

1 ∀l ∈ L \ l0, Rl ← ∅; Rl0 ← V0; Lre ← {l0};∀l ∈ L \ l0, C l ← ∅; C l0 ← Partition(V0, rv);

2 for i = 0; i < dT/δe; i+ + do

3 foreach l ∈ Lre do

4 R[i,i+1](C
l, ~u0(t)) =

⋃
~v∈Cl R[i,i+1](~v, ~u0(t));

5 Rl ← Rl ∪
(

inv(l) ∩R[i,i+1](C
l, ~u0(t))

)
;

6 end

7 foreach ~v ∈ C l do

8 if Rli(~v, ~u0(t)) ∩ inv(l) = ∅ then

9 C l ← C l \ {~v};
10 end

11 end

12 foreach l′ ∈ {l∗ | (l, l∗) ∈ E} do

13 Face(l,l′) = reset(l,l′)(R[i,i+1](C
l, ~u0(t)) ∩ guard((l, l′)));

14 Face(l,l′) ← Face(l,l′) \
⋃
~v∈Cl′ Brv(~v);

15 if Face(l,l′) 6= ∅ then

16 Lre ← Lre ∪ {l′};
17 C l

′
new = Partition(Face(l,l′), rv);

18 if R[0,1](C
l′
new, ~u0(t)) \ inv(l′) 6= ∅ then

19 return Zeno alarm;

20 end

21 Rl
′ ← Rl

′ ∪R[0,1](C
l′
new, ~u0(t));

22 C l
′ ← C l

′ ∪ C l′new;

23 end

24 end

25 if (i > 0) ∧ (i%m = 0) then

26 C l ←Partition(
⋃
~v∈Cl R

l
i(~v, ~u0(t)), rv);

27 end

28 end

Output: Lre, {Rl}l∈Lre

www.manaraa.com

48

jumps in the context of hybrid automaton. The inner loop lines 3-27 compute the single time-step

continuous and discrete reachability over-approximation from each current reachable location. In

line 4, R[i,i+1](C
l, ~u0(t)) denotes the reachable set over-approximation from the states covered by

C l and under input signal ~u(t) ∈ Bru(~u0(t)) defined over time interval [iδ, (i+1)δ]. It is the union of

the tube segments propagating from C l computed individually by Algorithm 3. Line 5 updates Rl,

adding the newly reached set over-approximation within inv(l). Lines 6-10 check each simulation

starting point ~v ∈ C l, and remove it from C l if its reachable set over-approximation at time-step i,

denoted Rli(~v, ~u0(t)) (see Remark 6 below), has exited inv(l).

Remark 6. Suppose a representative state ~v ∈ C l is created at time-step j, then at time-step

j ≤ i ≤ j + m, we have Rli(~v, ~u0(t)) = Bγl
i−j

(~vi−j). In Algorithm 4, all representative states in l

are created via partitions. But in Algorithm 5, they can also be generated via discrete jumps from

other locations as in lines 16-21. Thus the computation of Rli(~v, ~u0(t)) may vary accordingly.

Lines 11-23 detect and handle all possible outgoing discrete jumps from l. For each possible

discrete jump (l, l′) as shown in Figure 3.4, line 12 defines its entry face, denoted by Face(l,l′), as

the set of states reached upon reset from the states that trigger guard((l, l′)).

Figure 3.4: Discrete jump and value reset. Blue shadowed area is the union of all tube segments of
[iδ, (i+ 1)δ].

Line 13 refines Face(l,l′) to remove the states already represented by C l
′
. In lines 14-22, a

one-step reachability computation within l′ is performed starting from the nonempty Face(l,l′), to

over-approximate the post-jump continuous evolution in l′ for the remainder sample time (so its

sum with the pre-jump evolution time equals δ). Specifically, line 15 updates the reachable location

set due to a jump; line 16 generates new representative set C l
′
new by partitioning the reachability

www.manaraa.com

49

over-approximation in l′; lines 17-19 check if the one-step reachability over-approximation stays

within inv(l′) and returns a “Zeno alarm” otherwise (see Remark 7); line 20 updates Rl
′

with the

one-step reachable set over-approximation and line 21 adds C l
′
new into existing C l

′
.

Remark 7. The one-step reachable set over-approximation computed in line 16 may trigger a

discrete jump from l′ to some l′′, which requires another one-step over-approximation in l′′ , and

so on, all in one single sample time-step. Under our assumption of minimum dwell-time and the

choice of a sample time-step smaller than the dwell-time, we expect this situation to not arise. But

as a precaution, in this case, we let the algorithm terminate and report a “Zeno alarm” message.

Lines 23-25 periodically generate partitions, as in Algorithm 4, using rv-hypercube cells to cover

the over-approximation set at the current final time. Algorithm 5 returns the reachable location set

over-approximation Lre and the reachable state set over-approximation Rl for each l ∈ Lre. Both

Lre and {Rl}l∈Lre are updated at each time-step until time bound T is reached. We now establish

the correctness of Algorithm 5 as follows.

Theorem 5. Algorithm 5 is correct. That is, in the case of no Zeno alarm, if some ~v∗ ∈ inv(l∗) is

reachable from some ~v0 ∈ V0 ⊆ inv(l0) under the input ~u0(t) ∈ Bru(~u0(t)) over [0, T], then l∗ ∈ Lre

and ~v∗ ∈ Rl∗.

Proof. If l∗ = l0 and ~v∗ is reachable from ~v0 ∈ V0 ⊆ inv(l0) without any discrete jump, then l0 ∈ Lre

by default and it follows from Theorem 4 that ~v∗ ∈ Rl∗ .

Otherwise, consider the execution α from ~v0 ∈ V0 to ~v∗ ∈ inv(l∗) within [0, T∗]. Then α has

a finite length, and let α = τ0e1τ1 . . . ekτk, where ei = (li−1, li) is a discrete jump, and τi with

local time variable ti ∈ [0, Ti] is a continuous trajectory in li. By Definition 7, we have τ0(0) = ~v0,

τk(Tk) = ~v∗ and lk = l∗.

Regarding the discrete jumps, by Definition 7, we have:

T∗ = Σk
j=0Tj ≤ T, (3.7)

and, for 0 ≤ i ≤ k,

τi+1(0) = reset(li,li+1)(τi(Ti)). (3.8)

www.manaraa.com

50

Let Rli≤j denote the value of Rli after the jth iteration of lines 2-27 in Algorithm 5. It’s easy to see

that:

∀j ∈ [0, dT/δe − 1], Rli≤j ⊆ R
li
≤j+1, and ∀j ∈ [0, dT/δe], Rlij ⊆ R

li
≤j .

Next, we prove ∀ti ∈ [0, Ti], τi(ti) ∈ Rli≤dT∗/δe for 0 ≤ i ≤ k by induction.

For base step i = 0, τ0(0) ∈ Rl0≤0 holds by the initial condition. From Theorem 3, we have

∀t0 ∈ [0, T0], τ0(t0) ∈ Rl0≤dT0/δe.

For the inductive step, assume li ∈ Lre and ∀ti ∈ [0, Ti], τi(ti) ∈ Rli≤dΣij=0Tj/δe
. Then τi(Ti) ∈

Rli≤dΣij=0Tj/δe
. It implies that the discrete transition (li, li+1) was executed at some time-step s ≤

dΣi
j=0Tj/δe. Thus from (3.8) we have,

τi+1(0) = reset(li,li+1)(τi(Ti)) ∈ Face(li, li+1).

Face(li, li+1) is covered by either the existing or the new representative set at time-step s. Hence,

∀ti+1 ∈ [0, δ], τi+1(ti+1) ∈ Rli+1

≤s , (3.9)

owing to correctness of Algorithm 3 by Theorem 3. From (3.9) we know τi+1(δ) ∈ R
li+1

≤s . Then

from Theorem 3, we have:

∀ti+1 ∈ [δ, Ti+1], τi+1(ti+1) ∈ Rli+1

≤s+d(Ti+1−δ)/δe. (3.10)

From s ≤ dΣi
j=0Tj/δe, we have:

s+ d(Tj+1 − δ)/δe ≤ dΣi
j=0Tj/δe+ dTi+1/δe − 1 ≤ dΣi+1

j=0Tj/δe. (3.11)

Combining (3.9)-(3.11), we can conclude:

∀ti+1 ∈ [0, Ti+1], τi+1(ti+1) ∈ Rli+1

≤dΣi+1
j=0Tj/δe

.

Together with the base step and inductive step, we have:

~v∗ = τk(Tk) ∈ Rlk≤dΣkj=0Tk/δe
= Rl∗≤dT∗/δe,

with T∗ = Σk
j=0Tj from (3.7), and lk = l∗ by definition. Since T∗ ≤ T , we have ~v∗ ∈ Rl∗≤dT/δe = Rl∗ .

Finally, in lines 15-16, Algorithm 5 adds any reachable location l to Lre the first time l is

reached. Thus we can also conclude that by the time-step i = dT∗/δe, l∗ ∈ Lre.

www.manaraa.com

51

Algorithm 5 introduces extra over-approximation error when handling discrete jumps. Specif-

ically, the maximum error from partitioning the entry face after reset is rv, and then there is the

error from one-step over-approximation. Both can be made arbitrarily small by the choice of par-

tition/simulation parameters. For safety verification against an unsafe zone Sunsafe, we can simply

extend Algorithm 5 by inserting a line for checking the nonemptiness of Sunsafe ∩
⋃
l∈Lre R

l after

line 27. Empty intersection indicates system safety. Otherwise, the system may still be safe, and

to ascertain this, we may increase the granularity of partition by replacing rv with rv/2 and re-

executing Algorithm 5. Like all other algorithms for hybrid system safety verification, the iteration

doesn’t guarantee termination due to the inherent undecidability of the problem.

Remark 8. If the safety verification is the only goal, the partition function can be further enhanced

for computational efficiency. An enhanced function Partition(S, rv) returns the set of representative

states that cover only the boundary of S (or its convex hull). This is because any trajectory that

starts from the interior of S has to traverse through the boundary before it reaches any exterior

portion. Boundary partition gives representative set of size O(D(S)), compared to O((D(S))2) for

a bounded region S.

3.6 Implementation and Experimental Results

3.6.1 Implementation and Architecture

We developed a prototype tool, Hybrid System Step Simulation Verifier (HS3V), that implements

our algorithms using C# for the bounded-time reachability over-approximation for general hybrid

systems. Figure 3.5 shows its architecture. It contains seven main modules including a core step

procedure engine of four modules. Program interacts with three open source license libraries to

facilitate data processing. Modules and their functionalities are list as follows:

• Model Parser: This module accepts input files (in .txt or .xml format), parsing the syn-

tactical lines in each input file, and passes the data containing the description information of

the model and safety specification to the Verifier’s step procedure engine.

www.manaraa.com

52

Figure 3.5: Architecture of HS3V.

• Partitioner: This module generates the representative state set of a bounded region S using

cell radius parameter γ. The state space is partitioned into uniform γ-hypercubes. Then

the representative set, i.e. the center points of the γ-hypercubes overlapping S, is of size

O((D(S))2). Further improvement is done by selecting the center points of γ-hypercubes

that cover only the boundary of S (or its convex hull) to get the representative set of size

O(D(S)).

• Simulator: This module generates simulation trajectories whose simulation values are com-

puted using ALGLIB 2.0 [66].

• Tube Builder: This module builds tube segments around simulation values by Algorithm 3,

using Clipper [67] for polygon operations.

• Visualizer: This module plots the reachable tubes (and other optional data) using Gnuplot

[68].

• Condition Checker: This module checks the current reachable set over-approximation

against guard conditions and unsafe set, also using Clipper. When the safety specification is

violated, partition parameter is refined to restart the verification process.

• Textual Reporter: This module generates a textual report regarding the safety satisfaction

after the step procedure has been repeated till the given time bound.

www.manaraa.com

53

3.6.2 Experimental Results

Example 3. (Double-Integrator System [32]). Consider a double-integrator, such as a point moving

along a 1-d line, controlled through its acceleration. The dynamics are ẋ = v, v̇ = a, where

the acceleration a is set periodically by a PD controller with gains P = 10 and D = 3. The

controller update function periodically assigns a := P ∗ (1− x) +D ∗−v. The period of the control

task is T = 0.005 seconds. The system has a fixed point of x = 1.

We study the system’s position response over 5 seconds, with initial state x ∈ [0, 0.1] and v = 0.

Results of simulation and over-approximation using three existing tools are shown in Figure 3.6.

(a) (b)

(c)
(d)

‘

Figure 3.6: (a) Matlab Simulation output. (b) SpaceEx output. (c) Flow* output with original
model. (d) Flow* output with Hyst translated model. All plots in Figure 3.6 are taken from [32]
without modification.

Although the simulation may suggest that x stabilizes at 1, both SpaceEx and Flow* give

divergent reachability due to the errors introduced in frequent discrete transitions. SpaceEx uses a

www.manaraa.com

54

support function representation of the reachable set, which is not efficient in performing intersection

and deciding containment – operations often used in determining if a guard is triggered or an

safety condition is violated. Thus, SpaceEx has to introduce polyhedral representation into the

verification algorithm, causing extra over-approximating translations at the times of the discrete

transitions. Flow* uses Taylor Model representation and suffers from similar issues. Flow* gives

a better result on Hyst [31, 32] translated model. Hyst over-approximates the original frequently

switching continuously-controlled system with a continuously-controlled system with additional

bounded non-deterministic input, resulting in the so-called continuization, which eliminates a large

number of discrete transitions, thereby eliminating error growth caused by set transformations.

Similar approach was also seen in [69].

For our tool, HS3V, we set the simulation time-step δ = 0.0025s, the state partition parameter

rv = 0.003. Let (x0, v0) be one representative point of the initial zone. The reference trajectory

evolves according to ẋ
v̇

 =

0 1

0 0

x
v

+

0

1

 a, (3.12)

with x(0) = x0, v(0) = v0 and piecewise constant input signal a(t) = (10 − 10x(iδ) − 3v(iδ)) over

[2iδ, 2(i + 1)δ) for i ∈ Z≥0. Tube segments for the first 0.005s (2 time-steps) can be built with

the initial state set Brv((x0, v0)), in which a(t) ranges over B13rv(10− 10x0 − 3v0). At t = 0.005s,

forward simulation continues from a current representative value (x2, v2) with input range updated

to B13γ
2
(10 − 10x2 − 3v2). In general, at the ith control update, input value for simulation is

updated to 10− 10x2i − 3v2i and input range is updated to B13γ
2i

(10− 10x2i − 3v2i).

Figure 3.7 compares the reachability results for variable x before and after applying dynamic

repartitioning. Figure 3.7(a) gives good result within 3s, after which the error starts to grow

rapidly. This agrees with the exponential growth with Lipschitz constant 1 (see equation (3.12)).

Figure 3.7(b) using dynamic repartitioning with parameter m = 160 (γ
m
≈ 1.5γ0), shows much

improved result converging to a constant deviation comparable to the simulation result.

www.manaraa.com

55

(a) (b)

Figure 3.7: (a) HS3V output with exponential error growth without dynamic repartitioning. (b)
HS3V output with dynamic repartitioning happening inside dashed circles.

Example 4. (Brusselator system). It is a nonlinear model for a type of auto-catalytic reaction.

The system’s behavior is captured by the differential equations ẋ = 1+x2y−2.5x and ẏ = 1.5x−x2y.

Suppose µ = 1 and initial set x ∈ [1.25, 1.3] ∧ y ∈ [2.25, 2.3]. We again use a simulation

time-step of 0.01s and the state partition parameter γ of 0.001. The reachability results computed

before (red) and after (blue) applying dynamic repartitioning are shown in Figure 3.8. The later

outperforms the former over time that accuracy is maintained: [0, 7]s compared to [0, 1]s.

Figure 3.8: HS3V output for Brusselator system.

Example 5. (Bouncing ball) This is a classic example of a hybrid system. The continuous dy-

namics is given by v̇ = −g and ḣ = v where g is the acceleration due to gravity, h is the height

of the ball and v is the velocity. The hybrid aspect of the model stems from modeling the collision

of the ball with the ground as a partially elastic collision that causes energy loss. Accordingly, the

www.manaraa.com

56

bouncing ball displays a jump v+ = −cv−, where c ∈ [0, 1] is a constant, at the transition guard

condition, h = 0.

The bouncing ball may exhibit Zeno behavior since each time the ball bounces, it loses energy,

making the subsequent jumps closer in time. From Theorem 5, the correctness of the analysis

result can be guaranteed until a Zeno alarm is triggered. Let the constant of elastic collisions

c = 0.75. Suppose the initial zone is h ∈ [10, 10.1] ∧ v = 0, the simulation time-step δ = 0.01s,

and the state partition parameter γ = 0.003. Figure 3.9 shows the reachability results, comparing

before (red) and after (blue) applying dynamic repartitioning. The later maintains accuracy of

over-approximation for over [0, 20]s. Both reachability over-approximation show correct and fully

automatic discrete transitions with the guard and the reset corresponding to the collision event.

Figure 3.9: HS3V output for bouncing ball system.

3.6.3 Performance

All the experiments in this section were performed on a computer with 8G memory and Intel

Core @2.30GHz processor. Operating system used was Windows 7 x64. Table 3.1 gives perfor-

mance of HS3V on the benchmarks with dynamic repartitioning. Each benchmark is experimented

with three parameter settings. For each benchmark, the setting used by the figure in the previous

subsection is marked by *. Since the number of simulation time-steps is not fixed in our algo-

rithms, we only present the maximum number of simulation branches during program execution

for simplicity.

www.manaraa.com

57

From the table, one can see that the execution time of the program is roughly propositional to

the number of time-steps and the (maximum) number of simulation trajectories. Figure 3.10 shows

the trade-off between the execution time versus the precision, via the Brusselator benchmark. By

allowing finer granularity of partition, precision improves, while computation time goes up. The

error bound of precision can be calculated using the bounds provided in the chapter.

Table 3.1: Table of Performance on benchmarks.

Set. Benchmark T (sec) stepNo. m(step) simNo. time(sec)

1 DIS 5 1000 300 22 4.93

2 DIS 5 1000 80 22 9.44

3 DIS* 5 2000 160 64 13.01

4 Bruss 10 333 55 63 5.19

5 Bruss 10 333 15 64 7.62

6 Bruss* 10 1000 40 96 23.37

7 VDP 10 333 55 246 10.37

8 VDP 10 333 15 295 25.84

9 VDP* 10 1000 40 278 29.41

10 B.Ball 10 333 55 191 8.25

11 B.Ball 10 333 15 226 18.62

12 B.Ball* 10 1000 40 238 38.25
Set.: experimental setting index,T: time bound, stepNo.: number of total time-steps, m: partition

period, simNo: maximum simulation trajectories during program execution, time: program

execution time.

(a) (b)

Figure 3.10: (a) With Setting 5 in Table 3.1, HS3V execution time is 7.62s. (b) With Setting 6 in
Table 3.1, HS3V execution time is 23.37s.

www.manaraa.com

58

CHAPTER 4. “ReLIC: REDUCED LOGIC INFERENCE FOR

COMPOSITION” FOR QUANTIFIER ELIMINATION BASED

COMPOSITIONAL REASONING AND VERIFICATION

4.1 Introduction

From compositional perspective, distributed cyber-physical systems (CPSs) integrate physical

dynamical components with computing hardware and software, interconnected over an embedded

communication network. For example, Unmanned Systems Autonomy Services (UxAS) software

system [70] consists of a collection of modular services that interact via a common message passing

architecture. It provides a framework to construct and deploy software services that are used to en-

able autonomous capabilities by flexibly implementing autonomy algorithms on-board Unmanned

Aerial Vehicles (UAV)s [71]. Successful missions engaging autonomous actions of the UAVs require

highly dependable design. Within the model-based verification paradigm, compositional reason-

ing is employed for scalability, by utilizing composition of component properties to establish the

properties of a system made out of those components. The component-based compositional design

paradigm emphasizes the separation of concerns with respect to the system design through a modu-

lar and reuse based paradigm for defining, implementing, and composing components into systems.

In this chapter, we establish that “quantifier elimination” provides a foundation for compositional

reasoning, and also can be used to aid formal verification and model-checking.

Quantifier elimination (QE) is a powerful technique for gaining insight, through simplification,

into problems involving logic expressions in various theories. QE is essentially a projection problem

where a formula is projected to a lower dimension over only its free variables. For example, over the

field of reals, ∃x(y > x2) is equivalent to y > 0 (since x2 can only be non-negative), in which the

quantified variable x has been eliminated or projected out. A theory admits quantifier elimination

if for every formula in this theory, there is an equivalent quantifier-free formula. It has been proved

www.manaraa.com

59

that the real closed field and an extension of Presburger arithmetic (a linear theory of integers)

both admit QE [72, 73]. This makes the QE applicable to many real world applications.

While Tarski [72] showed that the first-order logic over the real closed field admits quantifier

elimination, it was Collins who in 1975, introduced the first implementable quantifier elimination

procedure, based on cylindrical algebraic decomposition (CAD) [74]. Over the past few decades, the

QE techniques and tools have undergone further enrichment, and the efforts made along the way

have contributed to newer additions. In particular, specialized procedures for restricted problem

classes led to newer, more advanced QE procedures, documented in tools such as Mathematica,

Redlog, and Qecad. For example, Redlog [4], implements virtual substitution [75, 76] and partial

CAD [77] algorithms, that work for formulae where the degrees of the quantified variables are small.

Many problems in systems and controls can be formulated as formulae in the first-order logic

of real closed field. QE was applied in [78] to solve nonlinear continuous control system design

with simple properties. In [79, 80], QE was used to compute exact reachable sets for linear systems

with certain eigen-structures and semi-algebraic initial sets, and this method was generalized in

[81] to handle linear systems with almost arbitrary eigen-structures. Further, [82, 83] extended the

application of real QE to formal verification and synthesis of continuous and switched dynamical

systems. QE solvers are also used as back-end reasoning engines in the bounded model-checking

based algorithm in [84] and in the theorem prover for hybrid systems KeYmaera [85].

In this chapter, we establish that QE can provide a foundation for compositional reasoning, that

are techniques being developed to cope with state-space explosion in concurrent systems [86, 87,

88, 89]. Essentially the strategy of divide-and-conquer is being employed where one first establishes

the properties of the system components, and then uses those to establish the global properties of a

complex system. Initially, during component development phase, each component is annotated with

an assume-guarantee style contract. Supposing a system is composed of N components, the contract

formula of the ith component can be expressed as Ai ⇒ Gi where Ai (the “assumption”), Gi (it’s

“guarantee”) are both expressed by formulae over the set of component variables. Then the set of all

the system behaviors is constrained by the conjunction of all the components’ contracts
∧N
i=1(Ai ⇒

www.manaraa.com

60

Gi). Under these contracts, we show that the strongest system property, that can be claimed that

the system satisfies, can be obtained by existentially quantifying the system’s internal variables

in the conjunct of
∧N
i=1(Ai ⇒ Gi) and the constraints resulting from the connectivity relation

among the components. Thus we establish that QE serves as a foundation for property/contract

composition. Now to check whether a system satisfies a postulated property, we only need to check

if the postulated property is implied by the aforementioned strongest system property. This in

itself can be cast as a QE problem.

Another important contribution of our work is the extension of QE-based property composition

to the case of time-dependent properties, which can depend on a (finite) history of input/output

variables. We show that the composed property may involve a longer history, but no more than the

cumulative histories of all its components. Accordingly, we introduce the notion of property order,

deduction of system order, and the composition of given properties along with their time-shifted

replicas to infer the strongest system property. We have implemented our QE-based compositional

verification approach in a prototype tool, ReLIC (Reduced Logic Inference for Composition), based

on the integration of Redlog with AGREE [2, 86, 90]—the former supports QE, while the latter is

a compositional analyzer for a system and its components described in the modeling framework

of AADL [1]. Our integration uses only the front-end of AGREE for specifying system architec-

ture/connectivity, components, and their properties in AADL and AGREE annex, and reporting the

result of composition to the user.

In addition to using QE for compositional reasoning, we also show that the problem of sat-

isfiability checking used in formal verification and model-checking can be reduced to one of QE.

Specifically, we consider the verification scheme based on k-induction [3, 91, 92, 93], implemented

for example as JKind [5], that is used to verify invariant properties of programs written in the lan-

guage Lustre [94]. Under this scheme, to prove a transition system satisfies some invariant property,

one needs to prove the base case and the inductive case for some k. For each step, the verification

of the base (or inductive) case can be reduced to an instance of an SMT (Satisfiability Modulo The-

ory) problem, namely checking the satisfiability of a first-order logic formula. Thus SMT-solving is

www.manaraa.com

61

integral to k-induction based verification. QE can offer alternatives for SMT-solving since checking

the satisfiability of a formula φ(x1, . . . , xn) in n-variables is equivalent to checking that the exis-

tentially quantified formula ∃x1 . . . ∃xnφ(x1, . . . , xn) evaluates to true or false. Thus with regards

to satisfiability, the capability of SMT solvers and QE solvers overlap, and can vary depending on

the algorithms they employ and the theories they support. The accumulated experimental data

provided in [95] has shown that Redlog along with other QE tools can offer advantage over SMT

solvers like Z3, iSAT, cvc3, specially for non-linear arithmetic, in terms of the execution time, and

the range of problems those can solve. To provide alternative options of back-end solvers to model-

checkers, we have implemented the integration of Redlog with JKind, so SMT-solving can also be

performed based on quantifier-elimination. This thereby enhances JKind’s ability of checking prop-

erties that may involve nonlinearity. A related application is the generation of property-directed

invariants by using QE in a k-induction-based framework [96].

In summary, the key contributions of the presented work are:

• Establish quantifier elimination as a foundation for property composition.

• Introduce the notion of strongest system property that can be inferred from the given compo-

nent properties and their connectivity relation, and provide a QE-based derivation approach.

• Extend the QE-based property composition formalism to time-dependent properties involving

temporal behavior.

• Implementation of the above in a new tool called ReLIC, that integrates a quantifier elim-

ination tool Redlog with another tool AGREE that supports AADL specification of system

architecture and component properties.

• Establish QE has an alternative choice for SMT-solving to be used by model-checkers.

• Implement within ReLIC the integration of QE solver Redlog with the model-checker JKind.

• Demonstrate the working of our implementations on simple illustrative examples.

The rest of the chapter is organized as follows. Section 4.2 describes the integration of Redlog

with JKind to provide the model-checker with an additional solver option. Section 4.3 describes

our framework for QE-based property composition, along with the developed prototype tool ReLIC

www.manaraa.com

62

for time-independent/temporal property composition. Section 4.4 provides the extension of QE-

based property composition to compose time-dependent properties. Each of these sections provides

illustrative examples of the said implementations.

4.2 QE support for Verification: Integration of Redlog with JKind

4.2.1 Preliminary

One approach for formal verification is bounded or k-induction model-checking. In this section

we demonstrate how QE can be used to aid k-induction based verification. The tool JKind [5]

supports k-induction proofs for transition systems described in Lustre [90]. It is based on a precursor

tool Kind [92], to make it platform independent and easily integratable into Java-based tools.

Before describing the tools, we briefly recall the formulation of k-induction [3, 92]. Consider

a transition system S specified in some logic L, by an initial state condition I(x) and transition

relation T (x, x′), where x, x′ are state variable vectors. Let x(i) denote the variable at the ith time

step. Then a state property φ(x) is invariant for S, i.e., satisfied by every reachable state of S, if

the following base and inductive conditions hold in L for some k ∈ Z≥1 and for any n ∈ Z≥0:

• I(x(0)) ∧
∧k−2
i=0 T

(
x(i), x(i+ 1)

)
⇒
∧k−1
i=0 φ(x(i));

•
∧n+k−1
i=n T

(
x(i), x(i+ 1)

)
∧
∧n+k−1
i=n φ(x(i))⇒ φ(x(n+ k)).

The first condition checks the base case that φ(x) is satisfied at each step from an initial state of

S for k steps. Any violation of this condition yields a concrete counterexample that falsifies the

property φ. The second condition describes the inductive case, which checks that if φ holds at each

state along a k-step trace, then φ also holds at the state reached in k+ 1 steps. A counterexample

trace for the inductive step does not necessarily yield a concrete counterexample because it may

start from an unreachable state of S. On the other hand, in order to prove the invariance of φ

over all states, the base and inductive cases must be true for some k. Hence a normal way of

a k-induction proof starts with k = 0, and increments k as necessary to rule out any spurious

counterexamples generated in an induction case. Induction based verification approach doesn’t

www.manaraa.com

63

guarantee termination for the general case (the problem in general is undecidable), so an a priori

bound on k is specified to prevent entering into an indefinite loop.

The model-checker JKind supports bounded model-checking using k-induction proofs on tran-

sition systems described in Lustre [94]. Figure 4.1 illustrates the general architecture of JKind. It

takes, as input, a Lustre based description, containing system model and properties to be checked,

and spawns three processes, respectively for base case, inductive case, and invariant generation

case. The invariant generation case tries to prove some candidate invariants from pre-defined tem-

plates, that could be used to facilitate the base or induction case proofs by strengthening their

hypotheses. Each process interacts with its own copy of an SMT solver at the back-end. All three

processes are coordinated under a director, exchanging messages asynchronously. The SMT results

are interpreted to produce the verification output.

Figure 4.1: JKind architecture.

4.2.2 Reduction of SMT instance to QE instance

An SMT instance is a formula in a first-order logic, and the problem is to check whether such

a formula is satisfiable. A formula φ(x1, . . . xn), with x1 . . . xm as un-quantified free variables, is

satisfiable if and only if there exists an assignment of the free variables that makes the formula

evaluate to true. The same can be expressed as a QE instance, ∃x1 . . . ∃xmφ(x1, . . . xn), and now

www.manaraa.com

64

since all the variables in φ(x1, . . . xn) are quantified, the equivalent quantifier-free formula that

a QE process returns is either true or false. In the case of former, a satisfiable assignment of

(x1 . . . xn) is also returned.

State-of-art SMT solvers such as Z3 that are commonly used in the research community, support

linear/non-linear arithmetic in mixed integer/real domain and various data structures such as lists,

arrays, bit vectors etc. Redlog, On the other hand, each first-order formula in Redlog must

exclusively contain atoms from one particular Redlog-supported domain, which determines the

choice of admissible functions and relations with specified semantics. Redlog-supported domains

include non-linear real arithmetic (Tarski Algebra), Presburger arithmetic, parametric quantified

Boolean formulae, and others.

We have implemented (i) a translator from SMT-Lib 2.0 input format to Redlog input format,

named S2RTool, using the front-end parser generated by Antlr v4 [97], and (ii) a back-end inter-

preter written in Java. Also, we have reprogrammed the JKind director in Figure 4.1 to redirect its

output .smt2 files meant for SMT to S2RTool, along each of its three processes, as shown in Fig-

ure 4.2. The dotted arrows denote the redirected data flow after integration of JKind with Redlog,

whereas the solid arrows denote the original flow. The S2RTool’s translated output is received by

Redlog for QE-based SMT-solving; its results are processed by our interpreter before forwarding

those to JKind for a possible next round of induction iteration. A simple comparison example of

Z3 vs. Redlog inputs is shown in Figure 4.3.

Figure 4.2: Data redirection in Redlog-integrated JKind.

www.manaraa.com

65

Figure 4.3: Z3 vs. Redlog.

Remark 9. Note while Redlog does not directly support mixed real-integer variables, the case of

mixed real/integer variables can still be handled as follows. If the integer variables are in bounded

ranges, then, in Redlog, the problem can be mapped to real domain as follows: for each integer

variable x, we append the formula
∨n
i=1(x = vi), where {v1, . . . , vn} is the set of possible integer

values of x. For the case of general mixed real/integer variables, where an integer variable may not

be finitely enumerated, we solve an over-approximation problem with all the variables interpreted in

the real domain. In this case, a “false” result of the over-approximation implies a “false” result of

the original problem. On the other hand, in a “true” case, if the assignment of x happens to be an

integer, this particular assignment is accepted for the original problem. Otherwise if the assignment

of x is not an integer, we simply report “unknown”.

4.2.3 Experimental result

We have successfully employed the Redlog-integrated JKind on many Lustre programs including

a fuzzy logic model involving non-linear computations. The fuzzy logic model contains 54 different

modes, and where a main program selects the correct mode depending on the conditions satisfied

by 4 real-valued inputs. Each mode invokes a call to a corresponding sub-program that computes

a specified 4th-order non-linear polynomial to arrive at the result for the only output variable. The

input/state/output variables are defined in real domain except the mode selection variable N is

an integer that varies from 1 to 54. For example, if the input satisfies the condition for the mode

N = 1, the following 4th-order non-linear polynomial computes the output: (−2.22222) ∗ x1in +

www.manaraa.com

66

(−2.00000)∗x2in+(−4.00000)∗x3in+(10.00000)∗x4in+(8.88889)∗x1in∗x2in+(7.40741)∗x1in∗

x3in+ (59.25926) ∗ x1in ∗ x4in+ (12.00000) ∗ x2in ∗ x3in+ (32.00000) ∗ x2in ∗ x4in+ (40.00000) ∗

x3in∗x4in+(−59.25926)∗x1in∗x2in∗x3in+(−177.77778)∗x1in∗x2in∗x4in+(−74.07407)∗x1in∗

x3in∗x4in+ (−240.00000)∗x2in∗x3in∗x4in+ (888.88889)∗x1in∗x2in∗x3in∗x4in+ (1.00000).

Figure 4.4: Verification of a fuzzy logic model using QE-integrated JKind.

www.manaraa.com

67

The Lustre program of the fuzzy logic model contains two properties to be verified, including

checking whether the fuzzy logic output remains bounded by 1 in magnitude. SMT-based JKind

is unable to resolve this problem since Z3 and other alternative SMT solvers fail to terminate. In

contrast, our QE-integrated JKind proves one property as valid and the second property as invalid,

reporting a concrete counterexample in less then 16 seconds on a standard laptop, during which

each query to Redlog spends less than 1 second. The log of QE-integrated JKind execution is

shown in Figure 4.4, where a concrete counterexample found to violate the boundedness property

of the output stated above is reported.

4.3 ReLIC for time-independent property composition

A modular approach to establishing system correctness involves the so-called, assume-guarantee

compositional paradigm [86, 87, 88, 89] within which, a module (component/system) contract is

specified by a pair (A,G), where A and G are first-order logic formulae: G describes the guaranteed

behavior of the module while A describes the assumed behavior of the environment with which the

module interacts. The contract itself expresses the requirement or property (A⇒ G). One aspect of

compositional verification aims to derive the system contract from the contracts of its components

together with their interactions through shared variables or event-synchronizations, that does not

reference any of the component models.

Example 6. For illustration, consider a simple case where two components connect in a cascade

composition, where their input/output properties are described by the formulae
(
(u1 ≥ 0) ⇒ (y1 ≥

0)
)

and
(
(u2 ≥ 0)⇒ (y2 ≥ 0)

)
respectively, where u and y denote input and output variables. Also,

owing to the cascade configuration, u2 = y1. Then it is easy to see that the cascaded system satisfies

the property
(
(u1 ≥ 0)⇒ (y2 ≥ 0)

)
.

Note this derivation, does not require the internal details of the components. [90] provides a

compositional reasoning approach that for a system with N components requires N +1 verification

steps to establish or refute a postulated system contract from the given component contracts:

one verification step for each component and one for the system as a whole. The component

www.manaraa.com

68

verification steps establish that the assumptions of each component are implied by the system-level

assumptions and the guarantees of all the upstream components. The system-level verification step

checks that the system guarantees follow from the system assumptions and the guarantees of the

components. A tool that supports compositional reasoning for components, their contracts, and

system architecture described in AADL [1] is AGREE. In this tool, while the architecture is described

in AADL, the properties in assume-guarantee style are specified within the AGREE annex. AGREE

uses JKind as its back-end model-checker for checking the above N + 1 conditions, and it itself

exists as a plug-in tool within the open-source Eclipse-based platform OSATE2 [98] that supports

AADL v2. The architecture of AGREE within OSATE2 is shown in Figure 4.5.

Figure 4.5: Architecture of AGREE plug-in within OSATE2 platform.

4.3.1 Proposed QE-based compositional verification

Our QE-based compositional reasoning approach is based upon the “strongest system property”,

derived from the given component-level properties. To introduce this notion, we first introduce some

notation. Consider a system S composed of N components. Let X := {x1, . . . , xn} be the set of all

the variables in S, Xint := {x1, . . . , xm} ⊆ X(m ≤ n), be the set of internal variables (namely, the

internal variables of components themselves along with the component inputs/outputs internalized

within the system), Xsys := X \Xint = {xm+1, . . . , xn} be the set of external variables (namely, the

www.manaraa.com

69

inputs and outputs of S), and C := {(xp, xq) | xp and xq are variables of connected ports in S} be

the set of connectivity relation among component variables. Suppose the ith component’s property

is described by a contract (Ai, Gi) in a certain first-order logic. We next define the strongest system

property and present a result that provides a method to derive it.

Definition 10. The strongest system property is the system property that implies any other system

properties established upon the given component properties and their connectivity relation.

Theorem 6. The strongest system property, established upon the component contracts and connec-

tivity relation of system S described above is given by,

∃x1 . . . ∃xm
(N∧
i=1

(Ai ⇒ Gi) ∧
∧

(xp,xq)∈C

(xp = xq)
)
. (4.1)

Proof. We prove this theorem by proving that indeed (4.1) is a system property, and that it implies

any other system property.

First, let V denote the valid signal values over X, and Vsys denote the valid signal values over

Xsys. By definition, Vsys is the projection of V from n to n − m dimensions. For any system-

level signal value ~vsys = (vm+1 . . . vn)T ∈ Vsys, where (·)T denotes the transpose operation, it must

correspond to a component-level signal value ~v = (v1 . . . vn)T ∈ V . Meanwhile, ~v ∈ V if and only

if: (N∧
i=1

(Ai ⇒ Gi) ∧
∧

(xp,xq)∈C

(xp = xq)
)∣∣∣
~x=~v
≡ true, (4.2)

where (4.2) simply states that a valid signal value must comply with the components contracts and

the connectivity relation. Therefore when ~xsys = ~vsys, we have ~vint = (v1 . . . vm)T that makes the

following formula true:

(N∧
i=1

(Ai ⇒ Gi) ∧
∧

(xp,xq)∈C

(xp = xq)
)∣∣∣
~xsys=~vsys

.

As a result, we have that any valid signal value, ~vsys satisfies:

∃x1 . . . ∃xm
(N∧
i=1

(Ai ⇒ Gi) ∧
∧

(xp,xq)∈C

(xp = xq)
)
. (4.3)

www.manaraa.com

70

(4.3) suggests that any system-level signal value satisfies (4.1), in another word, (4.1) is indeed a

system property.

Secondly, to show that (4.1) is also the strongest system property, assume φ is some given

system property of S. For any ~vsys that does not satisfies φ, ~vsys /∈ Vsys by definition. We need

to show that ~vsys 6|= (4.1). If this is false, then we can find v1, . . . , vm that together with ~vsys

forms a valid signal value in V . Since Vsys is the projection on xm+1, . . . , xn, we can conclude that

~vsys ∈ Vsys, thereby arriving at a contradiction. In summary, any signal value that violates φ, also

violates (4.1), alternatively speaking, (4.1) ⇒ φ, as desired.

Remark 10. Through (4.1) in Theorem 6, we have shown that property composition, in a component-

based compositional framework, is essentially a QE problem. Based on this insight, we have put forth

a two-step QE-based compositional verification procedure. The first step is to generate the strongest

system property, through a QE process of (4.1), applied to component contracts and connectivity

relation. The strongest system property upon QE, denoted φsys, contains only the system-level in-

put/output variables. The second step is to check if φsys implies any postulated system property

φpostl that also contains only system-level input/output variables. Note we can employ yet another

QE process ∀xm+1 . . . ∀xn(φsys ⇒ φpostl) to reduce the checking the implication φsys ⇒ φpostl to

“true” or “false”.

4.3.2 Implementation and experimental result

We have implemented a prototype tool ReLIC (Reduced Logic Inference for Composition) em-

ploying the above strategy of Remark 10, integrating AGREE (for system and component specification

in AADL) and Redlog (for QE). Within ReLIC, the AADL architecture description and the con-

tracts specified in the AGREE annex are abstracted and formulated into a QE problem in the Redlog

input format. Redlog acts as a back-end solver and interacts with AGREE as shown in Figure 4.6.

The figure also illustrates that the data flow of our QE-based compositional verification completely

bypasses JKind, removing the multi-step proof required under the AGREE’s model-checking scheme.

More importantly, our QE-based approach is able to automatically infer the strongest system

www.manaraa.com

71

property, given the component properties. This feature is missing from the current compositional

reasoning tools.

Figure 4.6: Data flow of compositional verification through Redlog.

Figure 4.7 shows an illustrative model example taken from [2], that we denote as system S.

It is composed of three components, whose architecture (components and connectivity relation)

is specified in an .aadl file. The assume-guarantee style component contracts for the components

A,B,C, and postulated contract for system S are as listed below:

• ContractA: (InA < 20)⇒ (OutA < 2× InA);

• ContractB: (InB < 20)⇒ (OutB < InB + 15);

• ContractC : true⇒ (OutC = InC1 + InC2);

• ContractS : (InS < 10)⇒ (OutS < 50).

Figure 4.7: An example model architecture, modified from [2].

Using the AGREE front-end, ReLIC can be executed by a newly added AGREE menu button

“Verify Composed Contract” as in Figure 4.8. Figure 4.9(a) shows the verification result of the

example interpreted in real domain, where the derived strongest system property (InS ≤ 10) ⇒

(OutS < 4 × InS + 15) is output to the OSATE2 console as shown in Figure 4.9(b). This is seen

to not imply the postulated ContractS , e.g., when (InS , OutS) is assigned the values (9, 50). A

www.manaraa.com

72

counterexample reported by Redlog is shown in Figure 4.9(c). Note that the Redlog counterex-

ample answer can contain constants named infinity or epsilon, both indexed by a number: All

infinity ’s are positive and infinite, and all epsilon’s are positive and infinitesimal with respect to

the underlying field.

Figure 4.8: Execution of ReLIC via AGREE command in OSATE2.

In contrast, in the integer domain, the strongest system property implies the postulated system

property, and the “Verify Composed Contract” returns true as in Figure 4.9(d). The ReLIC

derived strongest system property is shown in the Figure 4.9(e), in which the syntax cong(p1, p2, p3)

is a Redlog representation of congruences with the non-parametric modulus given by the third

argument. The strongest system property in the integer domain (InS ≤ 10)⇒ (Outs ≤ 4×Ins+12)

is more stringent. This is easily shown to imply the postulated ContractS . In both instances (of

real vs. integer domain), the entire verification process is performed within 1 second on a standard

laptop.

www.manaraa.com

73

(a) Verification result in real domain.

(b) The strongest system property derived in real domain.

(c) Counterexample in real domain.

(d) Verification result in integer domain.

(e) The strongest system property derived in integer domain.

Figure 4.9: ReLIC verification results on the illustrative example.

www.manaraa.com

74

4.4 ReLIC for time-dependent property composition

Complex systems often exhibit time-dependent features through components such as PID con-

troller, counter, or state-machine. In such cases, a component property can be a constraint over

its input/internal/output variables at different time-steps. The extension of QE-based property

composition to the time-dependent scenarios is not obvious; in fact (4.1) cannot be used as is.

Example 7. In order to see the difficulty encountered in case of time-dependent property com-

position, consider a simple example that consists of cascade of two identical components with in-

put u and output x for the first system, and input x and output y for the second system, and

with properties x > pre(u) and y > pre(x) respectively, in which pre(·) denotes the previous

value function, whereas the cascade connectivity is implied by the common variable x. Then one

can see that the strongest system property is simply the formula, y > pre(pre(u)). Note this fi-

nal formula includes the term pre(pre(u)) that does not appear in the given component prop-

erty formulae, and so a standard quantifier elimination as in (4.1) cannot be employed to ob-

tain the above final formula. Strikingly, if we shift each component property by one time step,

and compose the component properties and their time shifted replicas with the internal variable x,

pre(x), and pre(pre(x)) existentially quantified: ∃x∃pre(x)∃pre(pre(x))
((
x > pre(u)

)
∧
(
y >

pre(x)
)
∧
(
pre(x) > pre(pre(u))

)
∧
(
pre(y) > pre(pre(x))

))
, then upon quantifier elimination,

we do get the desired composed property: y > pre(pre(u)).

4.4.1 Approach to time-dependent property composition

Based on the above simple example, it is clear that the component properties may need to

be time-shifted to match the possibly higher order time-shifts needed for the governing equa-

tions/inequations of the composed system. To formalize the amount of time-shifts required, we

first introduce the notion of component/system order. For a time-dependent component/system,

each internal and output value is governed by the values of itself and of component/system inputs

over a finite history, which can be formulated as a set of difference equations/inequations over the

component/system variables.

www.manaraa.com

75

Definition 11. We define component/system order as the difference of maximum and minimum

time-shifts present in its governing difference equations/inequations.

Remark 11. Note that the order as defined above concerns all the component/system relations, and

it is possible that the composition of the equations/inequations results in a lower order input-output

property upon simplification. For example, a system with input u, internal variable x, and output

y can have properties x = u − pre(x) and y = x + pre(x). Then its order by our definition is at

least 1, but the simplified input-output property y = x+ pre(x) = (u− pre(x)) + pre(x) = u is of

zero order.

Consider a component/system with a set of variables X := {x1, . . . , xn} and set of internal

variables Xint := {x1, . . . , xm} ⊆ X, with m ≤ n. Let x(k) denote the variable at the kth time step

with step 0 being the initial step, and for s, t ∈ Z≥0, s ≤ t : X([s, t]) := {x(k)|x ∈ X, k ∈ [s, t]} be

the variables over the time interval [s, t]. If the order of this component/system is less or equal to

M , then its behavior can be summarized by the set of constraints over any interval [k, k + M] of

M + 1 consecutive time steps for all k ∈ Z≥0:

∧
all constraints over X([k, k +M]).

Then the formula for its input-output property is given by the existential quantification of all the

internal variables over all the M + 1 time steps:

∃x1(k) . . . ∃x1(k +M) . . . ∃xm(k) . . . ∃xm(k +M)
(∧

all constraints over X([k, k +M])
)
,

which can be written in a short form as:

∃∃Xint([k, k +M])
(∧

all constraints over X([k, k +M])
)
. (4.4)

The existentially quantified variables can be eliminated by applying QE on (4.4) to obtain a sim-

plified property formula that may be of a lower order than M . As illustrated in the beginning

of Section 4.4, additional time-shifts of component properties may be required before those are

composed. In order to decide the number of time-shifts needed, the order Msys of the composed

www.manaraa.com

76

system must be estimated. This is presented in the following theorem which states that an upper

bound for the system order is the sum of all its component orders.

Theorem 7. Given a system S composed of N multi-input-multi-output (MIMO) [99] components,

if the ith component is of order Mi, then
∑N

i=1Mi is an upper bound for the order Msys of S.

Proof. Without loss of generality, pick any two components of S with orders M1 and M2 re-

spectively. Each component possesses a set of properties specified as nonlinear difference equa-

tions/inequations in the general form of f(·) ∼ 0, where ∼∈ {>,≥,=}. For an inequation, we

can introduce a slack variable uf ∼ 0 such that the given difference inequation can equivalently

be written as the conjunction of a difference equation f(·)− uf = 0 and an extra linear constraint

uf ∼ 0. Note this additional constraint is of zero order and hence can not alter the overall order.

For the set of difference equations of component i with Ni inputs (including slack variables)

and Oi outputs, i = 1, 2, it is known that there exists an equivalent state-space representation [99],

and also the number of the state variables equals the order of the component. The general form of

such a state-space representation for component i is:

xi(k + 1) = fi
(
xi(k),ui(k)

)
,

yi(k) = gi

(
xi(k),ui(k)

)
,

where vectors ui (size: Ni × 1), xi (size: Mi × 1), and yi (size : Oi × 1) are respectively the input,

state, and output variable vectors of component i. (The constraints on the added slack variables

also exist, but as noted, do not involve time-shifts and so do not alter the component order.) fi(·)

(size: Mi × 1) and gi(·) (size: Oi × 1) are vectors of functions.

One can simply stack the two state space representations into a single one:x1(k + 1)

x2(k + 1)

 =

f1
(
x1(k),u1(k)

)
f2
(
x2(k),u2(k)

)
 ,

y1(k)

y2(k)

 =

g1

(
x1(k),u1(k)

)
g2

(
x2(k),u2(k)

)
 .

www.manaraa.com

77

It is then clear that the number of states of these, so far unconnected components, equals the sum

of the numbers of states of the two individual components. We claim that when the components are

connected, the state size does not grow, from which the desired result stated in the theorem can be

obtained. A general connectivity relation between two components can be formulated as uc = yc

where uc is a vector of inputs from the union of the two component inputs, and yc is a vector of

outputs from the union of two component outputs. We note that one input can only connect to

one output whereas one output may connect to multiple inputs. Since the overall connected system

can be obtained by iteratively adding one connection at a time, it suffices to show that adding a

single connection does not introduce an additional state variable. For compactness of notation, let

the state-space representation of the combined system be:

x(k + 1) = f
(
x(k),u(k)

)
,

y(k) = g
(
x(k),u(k)

)
,

where the state set has M1 + M2 variables. Suppose a single connection (up, yq) is introduced

within the system, where up ∈ u, yq ∈ y, and up, yq are from different components. Let u′ (resp.

y′) be the vector after removing up (resp. yq) from u (resp. y). Then, we have up(k) = yq(k) =

gq
(
x(k),u(k)

)
= gq

(
x(k),u′(k)

)
with gq ∈ g, and so the state-space representation can be written

as:

x(k + 1) = f
(
x(k),u′(k), gq

(
x(k),u′(k)

))
,

y(k) = g
(
x(k),u′(k), gq

(
x(k),u′(k)

))
.

Then it is easily seen that the updated state-space representation possesses input variables from

u′ (up becomes internal), output variables from y (or y \ {yq} if yq also becomes internal), while

the state-space remains x. (Further simplification and a state-space reduction may be possible.) It

follows that the system order of the connected system remains upper bounded by M1 + M2. The

result of the theorem then follows by iteratively connecting more components to the composition.

www.manaraa.com

78

Note any component may be described by a set of properties over its own input, internal, and

output variables (see for example the component CNTRL of the vehicle example in Figure 4.11),

and can be treated as a set of sub-components, each associated with a single property, and with their

connectivity relation implied by their common variables. Hence we have the following corollary:

Corollary 7.1. The order of a component is bounded by the sum of all its property orders. The

system order of S in Theorem 7 is bounded by the sum of all the individual property orders of all

its components.

After the composed system order bound Msys is determined, the ith individual property of the

components can be replicated Msys−Mi times, where Mi is the order of the ith individual property,

and the jth replica shifted j time-steps (j = 1, . . . ,Msys −Mi) to obtain the set of all constraints

over X([k, k +Msys]). These replicated and time-shifted properties of all the components can then

be composed to deduce the strongest system property:

∃∃Xint([k, k +Msys])
(∧

all constraints over X([k, k +Msys])
)
, (4.5)

where as before, the existential quantification is w.r.t. the internal variables Xint([k, k +Msys]) of

the system.

Remark 12. When the actual system order Msys is less than the upper bound
∑N

i=1Mi provided by

Theorem 7, the result of the QE in (4.5) will contain the conjunction of
∑N

i=1Mi−Msys redundant

expressions that are the time-shifted replicas of some other conjuncts within the same expression.

Example 8. Consider three properties z = y + x, y = pre(u), and x = pre(w), where x and y

are internal variables. Then, per Theorem 7, the system order upper bound is the sum of the three

subsystem orders: 0 + 1 + 1 = 2. On the other hand, it is easy to see that the composed property

over the external variables z, u, and w is z = y + x = pre(u) + pre(w), which is only of order 1.

www.manaraa.com

79

The computation of the composed property using our approach requires shifting each component

by its order difference with the upper bound (2, 1, 1 resp.), and then combining those using (4.5):

∃x(k)∃x(k + 1)∃x(k + 2)∃y(k)∃y(k + 1)∃y(k + 2)((
z(k) = y(k) + x(k)

)
∧
(
z(k + 1) = y(k + 1) + x(k + 1)

)
∧
(
z(k + 2) = y(k + 2) + x(k + 2)

)
∧
(
y(k + 1) = u(k)

)
∧
(
y(k + 2) = u(k + 1)

)
∧
(
x(k + 1) = w(k)

)
∧
(
x(k + 2) = w(k + 1)

))
.

Upon quantifier elimination we obtain:

(
z(k + 1) = u(k) + w(k)

)
∧
(
z(k + 2) = u(k + 1) + w(k + 1)

)
,

in which z(k + 2) = u(k + 1)+w(k + 1) is a one-step shifted replica of z(k + 1) = u(k)+w(k), hence

redundant. By expressing the QE result in conjunctive normal form, the redundant expressions can

be readily identified as the time-shifted replicas of some other expressions, and eliminated.

Following a similar approach as described above, we can also obtain the system-level initial

condition by composing the component-level initial conditions. For a system of order Msys, initial

conditions over the first Msys steps (0, . . . ,Msys − 1) suffice. So the system-level initial condition

can be obtained using:

∃∃Xint([0,Msys − 1])
(∧

all constraints over X([0,Msys − 1])
)
. (4.6)

Example 9. Consider the same example given at the beginning of this section with the component

properties and initial conditions: y > pre(x), y(0) > 0 and x > pre(u), u(0) > 1. Then in this

case, (4.6) is encoded as:

∃∃y([0, 1])
((
z(0) > 0

)
∧
(
z(1) > y(0)

)
∧
(
y(0) > 1

)
∧
(
y(1) > x(0)

))
,

which is equivalent to
(
z(0) > 0

)
∧
(
z(1) > 1

)
.

Once the system-level property and initial condition are encoded using (4.5) and (4.6) respec-

tively, the verification of a postulated system property can be done using an induction-based proof.

www.manaraa.com

80

4.4.2 Implementation and experimental result

The overall approach for time-dependent/temporal property composition and checking the cor-

rectness of a postulated property is summarized in Algorithm 6, whose steps can be understood as

follows:

Algorithm 6: Quantifier elimination-based compositional verification for time-dependent
properties.

Input: System S, set of all variables X := {x1, . . . , xn}, set of internal variables

Xint := {x1, . . . , xm}(m ≤ n), set of connectivity relations C, set of component

properties Φcomp, set of component initial conditions Icomp, postulated system

property φpostl over system inputs and outputs X \Xint.

1 Φall ← Φcomp ∪ {(xkp = xkq)|(xp, xq) ∈ C};
2 Msys ← Σφ∈Φcomp Order(φ);

3 Φall([k, k +Msys])← {Shift(φ, i)|φ ∈ Φall, i ∈ [0,Msys −Order(φ)]};
4 fsys ← Compose

(
X([k, k +Msys]), Xint([k, k +Msys]),Φall([k, k +Msys])

)
;

5 φsys ← Redlog(fsys);

6 Isys ← true;

7 if Icomp 6= ∅ then

8 Iall([0,Msys − 1])← Icomp ∪ Φall([0,Msys − 1]);

9 fsys ← Compose
(
X([0,Msys − 1]), Xint([0,Msys − 1]), Iall([0,Msys − 1])

)
;

10 Isys ← Redlog(fsys);

11 end

12 (result, ce)← k-induction(φsys, Isys, φpostl,K);

Output: result, ce

Line 1 collects the set of all constraints Φall over variables X as the union of component prop-

erties and the constraints from their connectivity relation. Line 2 assigns the system order Msys

with its upper bound computed according to Theorem 7 and its corollary. In Line 3, all the con-

straints over X([k, k +Msys]), denoted Φall([k, k +Msys]), are collected to comprise the set of all

the necessary time-shifted replicas of properties in Φall. The system-level composed property fsys is

obtained in line 4 over X([k, k +Msys]), by internalizing Xint([k, k +Msys]) in Φall([k, k +Msys]) as

in (4.5). The quantifier eliminator tool Redlog then performs QE on fsys to obtain the quantifier-

free formula φsys in line 5. Line 6 initializes the system-level initial condition Isys to true (which is

the default value when there are no component initial conditions). If the component initial condi-

www.manaraa.com

81

tion set is non-empty, lines 8-10 are used to derive the quantifier-free system-level initial condition

Isys based on (4.6). In line 12, k-induction based model-checking by QE-integrated JKind checks

whether the strongest system property φsys implies the postulated system property φpostl, and to

obtain the verification result result which could be true, false, or unknown. A counterexample

ce is generated if result is false. Note this inductive proof of the postulated system property is

carried out entirely at the system-level, without having to go back to the component-level, as it is

desired of a compositional reasoning approach.

We extended our prototype tool ReLIC to compose finite-order time-dependent properties (con-

tracts). The extended architecture of ReLIC is shown in Figure 4.10. It utilizes the front-end

infrastructure of the AGREE tool for capturing and parsing the input AADL models and also its

output environment for presenting the results to the console. The “Property Composer” module

computes the upper bound for the system-level order based on Theorem 7 and its corollary and

computes the strongest system-level property (contract). This is then used by the “Induction Ver-

ifier” module to perform induction-based system-level verification of a postulated system property.

Both these modules utilize Redlog as a back-end solver.

Figure 4.10: Architecture of ReLIC.

To demonstrate our tool, we tested it on a vehicle model as shown in Figure 4.11(a). The

vehicle consists of two components, namely, a PID control component “Speed Control” (CNTRL)

and a vehicle throttle “Throttle” (THROT), within a feedback configuration. The dynamics of

“Speed Control” is specified by a set of difference equations involving also certain state variables

www.manaraa.com

82

(Figure 4.11(b)), whereas the dynamics of “Throttle” is specified by a difference equation over only

its input and output variables (Figure 4.11(c)). There are three first-order expressions in total:

e int = prev(e, 0.0) + e,

e dot = prev(e, 0.0)− e, and

Actual.val = prev(Actual.val, 0.0) + 0.1 ∗Actuator Input,

where prev(·) is the extended delay operator pre(·) with the second argument denoting the initial

value. The postulated system property is

const tar speed⇒ (Actual Speed.val < 1.0),

where const tar speed is a Boolean variable whose truth indicates system target speed is set to

a constant value 1.0 (see its defining expression in Figure 4.12). The ReLIC inferred strongest

system property (based on (4.5) and (4.6)) contains the system-level difference equation as well as

the initial condition over system input Target Speed.val and system output Actual Speed.val.

While the upper bound for the composed system order is 3, it turns out that the system input-

output property order is only 1 due to the inherent parallelism among the components, as also

computed by our approach (see the encoded expressions and the console output in Figure 4.12):

51 ∗ actual speed− 49 ∗ pre actual speed− pre target speed− target speed = 0,

with the initial condition:

51 ∗ actual speed− target speed = 0

These are easily shown to imply the postulated system property using induction for k = 1, where

the base step and the inductive step are:

(51 ∗ actual speed− target speed = 0)⇒
(
(target speed = 1)⇒ (actual speed < 1)

)
, and

(
(51 ∗ actual speed− 49 ∗ pre actual speed− pre target speed− target speed = 0)

∧ (pre target speed = 1) ∧ (pre actual speed < 1)
)

⇒
(
(target speed = pre target speed)⇒ (actual speed < 1)

)
.

www.manaraa.com

83

(a) A vehicle model and its components dynamics.

(b) Specification of CNTRL component.

(c) Specification of THROT component.

Figure 4.11: A vehicle model, modified from [2].

www.manaraa.com

84

Figure 4.12: ReLIC verification output on the vehicle model.

www.manaraa.com

85

CHAPTER 5. CONCLUSION

Our work on the formal verification of the model-based cyber-physical systems involves research

over different but related subjects within the compositional verification paradigm. We started from

approaches applied at the component-level to tackle the problems raised by models with complex

transition behaviors and/or nonlinear continuous dynamics. Once the component-level properties

are established, compositional reasoning technique can take over to the next level, i.e., establishing

the system-level properties without looking again into redundant component-level implementation

details. The derived system property further can be used to prove postulated system property to

complete the verification process if the former is more stringent. At each of the three stages of our

work, we developed a prototype tool that implemented our verification algorithms and demonstrated

the capability and efficiency of our approaches.

In Chapter 2, we presented a counterexample fragment based specification relaxation (CEFSR)

approach for the safety verification of linear hybrid automata. While preserving the discrete-time

behaviors, a linear hybrid automaton is translated to an equivalent linear transition system with the

same discrete transition graph. The abstract model of the linear transition system, i.e., its discrete

transition graph, is model checked against the safety specification to find a counterexample in each

iteration. Feasibility analysis of a counterexample in the concrete model is conducted by solving the

set of constraints collected along the counterexample path in the concrete model and compacted

to find an unsatisfiable core. We also explained the way to encode the unsatisfiable core of a

spurious counterexample and to use it to relax the current specification. The relaxed specification

eliminates all counterexamples possessing the same unsatisfiable core in a single iteration. The

above approach is implemented in our prototype verifier LhaVrf , integrated with the state-of-the-

art symbolic model checker NuSMV and SMT solver Z3. The verifier accepts a set of input files

containing the constituent linear hybrid automata written in an easy-to-specify textual syntax. In

www.manaraa.com

86

case of termination, the verifier outputs a concrete counterexample that reaches an unsafe location,

or reports that safety is satisfied. Since the reachability problem for LHAs is undecidable, there is

no a priori guarantee of termination (as is the case with any hybrid system verifier). The scalability

of the tool is demonstrated by applying it to an instance of Fischers mutual exclusion protocol with

10 processes (containing approximately 1 million discrete locations and 13 million transition edges).

In Chapter 3, we presented an on-the-fly dynamic repartitioning based scheme, integrated into

a simulation-based approach for over-approximating of the bounded-time reachability of hybrid

systems. The dynamic, on-the-fly partitioning not only helps limit the over-approximation error,

but also extends the applicability to general hybrid systems. Prior simulation-based approach did

not possess such generality because the occurrence of new discrete transitions in the states reached

within the simulation error bound. As a result, the usage of prior simulation-based verification

approaches has remained limited to either continuous dynamical systems (with no discrete jumps),

or to switched systems subject to time-driven switching with predefined switching signals, or to

hybrid systems with strict assumptions on state continuity, and location consistency among simu-

lation and execution traces. Our development shows that the computation of the reachable set is

guaranteed to be reliable in each of the simulation time-steps. This is then used to generate the

reliable simulation seeds of the next time-steps. Thereby, the reliability of simulation trajectory in

over-approximating the reachability is maintained. Meanwhile, our algorithm performs state repar-

tition at each discrete transition, so that it can handle general hybrid systems with guard/reset

predicates, thereby allowing state-triggered discrete transitions. Our approach also contributed to

error growth control. In order to alleviate the exponential rate of error growth of the tubes, our

approach periodically partitions the reachable set, which converges for convergent dynamics. As a

result, the number of running simulations is dynamically decided in run-time. It may even decrease

compared to the initial number for a convergent dynamics. These are not guaranteed for many

of the existing tools as shown by our example. For certain type of convergent systems, we pro-

vided convergent bounds on trajectory deviation, even for using simple to compute Lipschitz-based

discrepancy functions. As a result, for systems that exhibit convergent behaviors, system safety

www.manaraa.com

87

over infinite horizon may be also assured as witnessed in Figure 3.10. Another novel feature of

our approach is that it supports systems with certain types of inputs (i.e., open systems). Finally,

we also presented the implementation of our prototype tool (HS3V) which employs the proposed

algorithms, and experiment results reporting improvements on a variety of benchmarks.

Compositional reasoning is central to scaling model-based approaches for establishing correct-

ness. In Chapter 4, we showed that the foundational principle underlying the compositional rea-

soning is Quantifier Elimination (QE). Within our compositional verification framework, QE was

used to derive the strongest system property from the given components properties and their con-

nectivity relation. This simplifies the compositional verification into two fixed steps, independent

of the number of components, and also reduces the number of variables needed in the proof of the

postulated system properties, thus improving the efficiency of compositional reasoning. We further

extended our property composition framework to support the composition of time-dependent prop-

erties. This is a foundational step towards compositional reasoning of systems with “memory”.

The extension developed a new procedure to determine the system order, given the component

orders, which we implemented in our prototype tool ReLIC that uses AGREE at the front-end for

model input and result output, and Redlog at the back-end for performing QE. Within this tool,

we also implemented the QE procedure to infer the system-level property that incorporates time-

dependence. The proof of a postulated system-level property involves induction, which is also

supported in ReLIC. Aside from property composition using QE, we showed that certain formal

verification steps can also be viewed as QE problems. Thereby, the QE tools provide options to

also extend the existing verification tools (like the compositional reasoning tools). In order to take

advantage of QE’s ability of solving the satisfiability problem over first-order logic, we integrated

the QE tool Redlog as a back-end solver, in parallel with the existing SMT solvers, for the k-

induction based model-checker JKind, enhancing the later’s capability to model-check nonlinear

properties. Our QE-integrated JKind was able to resolve a fuzzy logic problem involving non-linear

computation efficiently, whereas the SMT-integrated version was unable to terminate, showing the

extended capability for model-checking provided by QE.

www.manaraa.com

88

BIBLIOGRAPHY

[1] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis & design language (aadl):

An introduction,” tech. rep., Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst,

2006.

[2] A. Gacek, J. Backes, W. Mike, C. Darren, and L. Jing, “Agree users guide, v0.9,” 2017.

[3] M. Sheeran, S. Singh, and G. St̊almarck, “Checking safety properties using induction and a sat-

solver,” in International conference on formal methods in computer-aided design, pp. 127–144,

Springer, 2000.

[4] “Redlog.” http://www.redlog.eu.

[5] A. Gacek, “Jkind-a java implementation of the kind model checker,” Retrieved June, vol. 15,

p. 2016, 2015.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical computer

science, vol. 138, no. 1, pp. 3–34, 1995.

[7] T. A. Henzinger, “The theory of hybrid automata,” in Verification of Digital and Hybrid

Systems, pp. 265–292, Springer, 2000.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstraction re-

finement,” in International Conference on Computer Aided Verification, pp. 154–169, Springer,

2000.

[9] S. Jiang, “Abstraction based reachability analysis of concurrent linear hybrid automata,” tech.

rep., GM Research Report ECI-293, 2006.

http://www.redlog.eu

www.manaraa.com

89

[10] S. Jiang, “Reachability analysis of linear hybrid automata by using counterexample fragment

based abstraction refinement,” in American Control Conference, 2007. ACC’07, pp. 4172–

4177, IEEE, 2007.

[11] R. Kumar, C. Zhou, and S. Jiang, “Safety and transition-structure preserving abstraction of

hybrid systems with inputs/outputs,” in Discrete Event Systems, 2008. WODES 2008. 9th

International Workshop on, pp. 206–211, IEEE, 2008.

[12] H. Ren, J. Huang, S. Jiang, and R. Kumar, “A new abstraction-refinement based verifier for

modular linear hybrid automata and its implementation,” in Networking, Sensing and Control

(ICNSC), 2014 IEEE 11th International Conference on, pp. 30–35, IEEE, 2014.

[13] “z3.” https://github.com/Z3Prover/z3.

[14] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker for hybrid systems,”

International Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 110–122,

1997.

[15] R. Alur, “Formal verification of hybrid systems,” in Embedded Software (EMSOFT), 2011

Proceedings of the International Conference on, pp. 273–278, IEEE, 2011.

[16] G. Frehse, S. K. Jha, and B. H. Krogh, “A counterexample-guided approach to parameter

synthesis for linear hybrid automata,” in International Workshop on Hybrid Systems: Com-

putation and Control, pp. 187–200, Springer, 2008.

[17] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Hycomp: An smt-based model checker for

hybrid systems,” in International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, pp. 52–67, Springer, 2015.

[18] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid systems,” in

International Conference on Computer Aided Verification, pp. 365–370, Springer, 2002.

https://github.com/Z3Prover/z3

www.manaraa.com

90

[19] T. Dang and O. Maler, “Reachability analysis via face lifting,” in International Workshop on

Hybrid Systems: Computation and Control, pp. 96–109, Springer, 1998.

[20] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid system verification,”

IEEE transactions on automatic control, vol. 48, no. 1, pp. 64–75, 2003.

[21] P. S. Duggirala, M. Potok, S. Mitra, and M. Viswanathan, “C2e2: a tool for verifying anno-

tated hybrid systems,” in Proceedings of the 18th International Conference on Hybrid Systems:

Computation and Control, pp. 307–308, ACM, 2015.

[22] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: a verification tool for

stateflow models,” in International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, pp. 68–82, Springer, 2015.

[23] C. Fan and S. Mitra, “Bounded verification with on-the-fly discrepancy computation,” in

International Symposium on Automated Technology for Verification and Analysis, pp. 446–

463, Springer, 2015.

[24] C. Fan, J. Kapinski, X. Jin, and S. Mitra, “Locally optimal reach set over-approximation for

nonlinear systems,” in Proceedings of the 13th International Conference on Embedded Software,

p. 6, ACM, 2016.

[25] C. Le Guernic and A. Girard, “Reachability analysis of hybrid systems using support func-

tions,” in International Conference on Computer Aided Verification, pp. 540–554, Springer,

2009.

[26] C. Le Guernic and A. Girard, “Reachability analysis of linear systems using support functions,”

Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250–262, 2010.

[27] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,

T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in International

Conference on Computer Aided Verification, pp. 379–395, Springer, 2011.

www.manaraa.com

91

[28] S. Minopoli and G. Frehse, “Sl2sx translator: from simulink to spaceex models,” in Proceedings

of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 93–98,

ACM, 2016.

[29] M. Althoff and G. Frehse, “Combining zonotopes and support functions for efficient reachabil-

ity analysis of linear systems,” in Decision and Control (CDC), 2016 IEEE 55th Conference

on, pp. 7439–7446, IEEE, 2016.

[30] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski, “Eliminating spurious

transitions in reachability with support functions,” in Proceedings of the 18th International

Conference on Hybrid Systems: Computation and Control, pp. 149–158, ACM, 2015.

[31] S. Bak, S. Bogomolov, and T. T. Johnson, “Hyst: a source transformation and translation tool

for hybrid automaton models,” in Proceedings of the 18th International Conference on Hybrid

Systems: Computation and Control, pp. 128–133, ACM, 2015.

[32] S. Bak and T. T. Johnson, “Periodically-scheduled controller analysis using hybrid systems

reachability and continuization,” in Real-Time Systems Symposium, 2015 IEEE, pp. 195–205,

IEEE, 2015.

[33] M. Berz and K. Makino, “Verified integration of odes and flows using differential algebraic

methods on high-order taylor models,” Reliable Computing, vol. 4, no. 4, pp. 361–369, 1998.

[34] K. Makino and M. Berz, “Rigorous integration of flows and odes using taylor models,” in

Proceedings of the 2009 conference on Symbolic numeric computation, pp. 79–84, ACM, 2009.

[35] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model flowpipe construction for non-

linear hybrid systems,” in Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, pp. 183–

192, IEEE, 2012.

[36] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear hybrid

systems,” in International Conference on Computer Aided Verification, pp. 258–263, Springer,

2013.

www.manaraa.com

92

[37] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation and clustering in space-

time,” in Proceedings of the 16th international conference on Hybrid systems: computation and

control, pp. 203–212, ACM, 2013.

[38] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga, “Simulation-guided

lyapunov analysis for hybrid dynamical systems,” in Proceedings of the 17th international

conference on Hybrid systems: computation and control, pp. 133–142, ACM, 2014.

[39] H. Ren and R. Kumar, “Step simulation/overapproximation-based verification of nonlinear

deterministic hybrid system with inputs,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 21–26,

2015.

[40] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press, 1999.

[41] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and M. Szreter,

“Comparing bdd and sat based techniques for model checking chaum’s dining cryptographers

protocol,” Fundamenta Informaticae, vol. 72, no. 1-3, pp. 215–234, 2006.

[42] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke, “Reachability for linear hybrid au-

tomata using iterative relaxation abstraction,” in International Workshop on Hybrid Systems:

Computation and Control, pp. 287–300, Springer, 2007.

[43] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Hybrid automata-based cegar

for rectangular hybrid systems,” Formal Methods in System Design, vol. 46, no. 2, pp. 105–134,

2015.

[44] G. Frehse, “Phaver: algorithmic verification of hybrid systems past hytech,” International

Journal on Software Tools for Technology Transfer, vol. 10, no. 3, pp. 263–279, 2008.

[45] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to model and prove

hybrid systems with keymaera: a tutorial on safety,” International Journal on Software Tools

for Technology Transfer, vol. 18, no. 1, pp. 67–91, 2016.

www.manaraa.com

93

[46] T. T. Johnson and S. Mitra, “Anonymized reachability of hybrid automata networks,” in

International Conference on Formal Modeling and Analysis of Timed Systems, pp. 130–145,

Springer, 2014.

[47] S. N. Krishna and A. Trivedi, “Hybrid automata for formal modeling and verification of cyber-

physical systems,” arXiv preprint arXiv:1503.04928, 2015.

[48] P. S. Duggirala, C. Fan, M. Potok, B. Qi, S. Mitra, M. Viswanathan, S. Bak, S. Bogomolov,

T. T. Johnson, L. V. Nguyen, et al., “Tutorial: software tools for hybrid systems verification,

transformation, and synthesis: C2e2, hyst, and tulip,” in Control Applications (CCA), 2016

IEEE Conference on, pp. 1024–1029, IEEE, 2016.

[49] G. Morbé, F. Pigorsch, and C. Scholl, “Fully symbolic model checking for timed automata,”

in International Conference on Computer Aided Verification, pp. 616–632, Springer, 2011.

[50] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability analysis of

piecewise-linear dynamical systems,” in International Workshop on Hybrid Systems: Com-

putation and Control, pp. 20–31, Springer, 2000.

[51] A. Donzé and O. Maler, “Systematic simulation using sensitivity analysis,” in International

Workshop on Hybrid Systems: Computation and Control, pp. 174–189, Springer, 2007.

[52] E. M. Clarke and P. Zuliani, “Statistical model checking for cyber-physical systems,” in In-

ternational Symposium on Automated Technology for Verification and Analysis, pp. 1–12,

Springer, 2011.

[53] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotated models from execu-

tions,” in Proceedings of the Eleventh ACM International Conference on Embedded Software,

p. 26, IEEE Press, 2013.

[54] Z. Huang and S. Mitra, “Computing bounded reach sets from sampled simulation traces,” in

Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and

Control, pp. 291–294, ACM, 2012.

www.manaraa.com

94

[55] Z. Huang and S. Mitra, “Proofs from simulations and modular annotations,” in Proceedings of

the 17th international conference on Hybrid systems: computation and control, pp. 183–192,

ACM, 2014.

[56] M. Althoff, “An introduction to cora 2015.,” in ARCH@ CPSWeek, pp. 120–151, 2015.

[57] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic in cora 2016.,” in

ARCH@ CPSWeek, pp. 91–105, 2016.

[58] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for nonlinear control

systems without stability assumptions,” IEEE Transactions on Automatic Control, vol. 57,

no. 7, pp. 1804–1809, 2012.

[59] J. Liu and N. Ozay, “Finite abstractions with robustness margins for temporal logic-based

control synthesis,” Nonlinear Analysis: Hybrid Systems, vol. 22, pp. 1–15, 2016.

[60] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic models for incre-

mentally stable switched systems,” IEEE Transactions on Automatic Control, vol. 55, no. 1,

pp. 116–126, 2010.

[61] G. Wood and B. Zhang, “Estimation of the lipschitz constant of a function,” Journal of Global

Optimization, vol. 8, no. 1, pp. 91–103, 1996.

[62] A. Strzeboński, “Computation with semialgebraic sets represented by cylindrical algebraic

formulas,” in Proceedings of the 2010 International Symposium on Symbolic and Algebraic

Computation, pp. 61–68, ACM, 2010.

[63] K. Mørken, “Numerical solution of differential equations.” http://www.uio.no/studier/

emner/matnat/math/MAT-INF1100/h10/kompendiet/kap13.pdf, 2010.

[64] D. Angeli, “A lyapunov approach to incremental stability properties,” IEEE Transactions on

Automatic Control, vol. 47, no. 3, pp. 410–421, 2002.

http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h10/kompendiet/kap13.pdf
http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h10/kompendiet/kap13.pdf

www.manaraa.com

95

[65] B. S. Rüffer, N. van de Wouw, and M. Mueller, “From convergent dynamics to incremental

stability,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp. 2958–

2963, IEEE, 2012.

[66] “Alglib 2.0.” http://www.alglib.net.

[67] “Clipper.” http://www.angusj.com/delphi/clipper.php.

[68] “Gnuplot.” http://www.gnuplot.info.

[69] M. Althoff, S. Yaldiz, A. Rajhans, X. Li, B. H. Krogh, and L. Pileggi, “Formal verification of

phase-locked loops using reachability analysis and continuization,” in Computer-Aided Design

(ICCAD), 2011 IEEE/ACM International Conference on, pp. 659–666, IEEE, 2011.

[70] S. Rasmussen, K. Kalyanam, and D. Kingston, “Field experiment of a fully autonomous

multiple uav/ugs intruder detection and monitoring system,” in Unmanned Aircraft Systems

(ICUAS), 2016 International Conference on, pp. 1293–1302, IEEE, 2016.

[71] D. Kingston, S. Rasmussen, and L. Humphrey, “Automated uav tasks for search and surveil-

lance,” in Control Applications (CCA), 2016 IEEE Conference on, pp. 1–8, IEEE, 2016.

[72] A. Tarski, “A decision method for elementary algebra and geometry,” in Quantifier elimination

and cylindrical algebraic decomposition, pp. 24–84, Springer, 1998.

[73] H. Enderton and H. B. Enderton, A mathematical introduction to logic. Academic press, 2001.

[74] G. Collins, “Quantifier elimination in the elementary theory of real closed fields by cylindrical

algebraic decomposition, vol. 33,” Lecture Notes in Computer Science, pp. 134–183.

[75] V. Weispfenning, “The complexity of linear problems in fields,” Journal of symbolic computa-

tion, vol. 5, no. 1-2, pp. 3–27, 1988.

[76] V. Weispfenning, “The complexity of almost linear diophantine problems,” Journal of Symbolic

Computation, vol. 10, no. 5, pp. 395–403, 1990.

http://www.alglib.net
http://www.angusj.com/delphi/clipper.php
http://www.gnuplot.info

www.manaraa.com

96

[77] G. E. Collins and H. Hong, “Partial cylindrical algebraic decomposition for quantifier elim-

ination,” in Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 174–200,

Springer, 1998.

[78] M. Jirstrand, “Nonlinear control system design by quantifier elimination,” Journal of Symbolic

Computation, vol. 24, no. 2, pp. 137–152, 1997.

[79] G. Lafferrierre, G. J. Pappas, and S. Yovine, “Symbolic reachability computation for families

of linear vector fields,” J. of Symbolic Computation, vol. 11, pp. 1–23, 2001.

[80] H. Anai and V. Weispfenning, “Reach set computations using real quantifier elimination,” in

International Workshop on Hybrid Systems: Computation and Control, pp. 63–76, Springer,

2001.

[81] A. Tiwari, “Approximate reachability for linear systems,” in HSCC, vol. 2623, pp. 514–525,

Springer, 2003.

[82] A. Taly and A. Tiwari, “Switching logic synthesis for reachability,” in Proceedings of the tenth

ACM international conference on Embedded software, pp. 19–28, ACM, 2010.

[83] T. Sturm and A. Tiwari, “Verification and synthesis using real quantifier elimination,” in Pro-

ceedings of the 36th international symposium on Symbolic and algebraic computation, pp. 329–

336, ACM, 2011.

[84] M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patanè, “Synthesising robust and optimal

parameters for cardiac pacemakers using symbolic and evolutionary computation techniques,”

in International Workshop on Hybrid Systems Biology, pp. 119–140, Springer, 2015.

[85] A. Platzer and J.-D. Quesel, “Keymaera: A hybrid theorem prover for hybrid systems (sys-

tem description),” in International Joint Conference on Automated Reasoning, pp. 171–178,

Springer, 2008.

www.manaraa.com

97

[86] D. Stewart, M. W. Whalen, D. Cofer, and M. P. Heimdahl, “Architectural modeling and analy-

sis for safety engineering,” in International Symposium on Model-Based Safety and Assessment,

pp. 97–111, Springer, 2017.

[87] T. A. Henzinger, M. Minea, and V. Prabhu, “Assume-guarantee reasoning for hierarchical

hybrid systems,” in HSCC, vol. 2034, pp. 275–290, Springer, 2001.

[88] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. Pasareanu, A. Podelski, and T. Strump,

“Assume-guarantee abstraction refinement meets hybrid systems,” in Haifa verification con-

ference, pp. 116–131, Springer, 2014.

[89] H. Mehrpouyan, D. Giannakopoulou, G. Brat, I. Y. Tumer, and C. Hoyle, “Complex engi-

neered systems design verification based on assume-guarantee reasoning,” Systems Engineer-

ing, vol. 19, no. 6, pp. 461–476, 2016.

[90] D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley, and L. Sha, “Compositional verification

of architectural models,” NASA Formal Methods, pp. 126–140, 2012.

[91] N. Eén and N. Sörensson, “Temporal induction by incremental sat solving,” Electronic Notes

in Theoretical Computer Science, vol. 89, no. 4, pp. 543–560, 2003.

[92] T. Kahsai and C. Tinelli, “Pkind: A parallel k-induction based model checker,” arXiv preprint

arXiv:1111.0372, 2011.

[93] E. Ghassabani, M. Whalen, A. Gacek, and R. Collins, “Efficient generation of all minimal

inductive validity cores,” FMCAD, 2017.

[94] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming

language lustre,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

[95] D. Jovanović and L. De Moura, “Solving non-linear arithmetic,” ACM Communications in

Computer Algebra, vol. 46, no. 3/4, pp. 104–105, 2013.

www.manaraa.com

98

[96] A. Champion, R. Delmas, and M. Dierkes, “Generating property-directed potential invariants

by quantifier elimination in a k-induction-based framework,” Science of Computer Program-

ming, vol. 103, pp. 71–87, 2015.

[97] “Antlr v4.” http://www.antlr.org.

[98] “Osate 2.2.0.” http://osate.github.io.

[99] M. S. Fadali and A. Visioli, Digital control engineering: analysis and design, ch. 7. State-Space

Representation. Academic Press, 2012.

http://www.antlr.org
http://osate.github.io

	2018
	Model-based compositional verification approaches and tools development for cyber-physical systems
	Hao Ren
	Recommended Citation

	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	2. VERIFICATION USING COUNTEREXAMPLE FRAGMENT BASED SPECIFICATION RELAXATION: CASE OF MODULAR/CONCURRENT LINEAR HYBRID AUTOMATA
	2.1 Introduction
	2.2 Related Works
	2.2.1 Symbolic Set-based Reachability Analysis
	2.2.2 Model Checking and Counterexample-Guided Abstraction Refinement

	2.3 Notation and Preliminary
	2.3.1 Linear Hybrid Automaton (LHA)
	2.3.2 Linear Transition System (LTS) and Translation of LHA into LTS
	2.3.3 Safety Verification Algorithm of LHA
	2.3.4 Concurrent LHA

	2.4 Implementation of LhaVrf
	2.4.1 Architecture
	2.4.2 An Illustrative Example

	3. SIMULATION BASED VERIFICATION OF BOUNDED-HORIZON SAFETY FOR HYBRID SYSTEM USING DYNAMIC NUMBER OF SIMULATIONS
	3.1 Introduction
	3.2 Notation and Preliminary
	3.3 Reachable Tube Computation
	3.3.1 Error Growth in Continuous Evolution
	3.3.2 Reachable Set in a Single Time-Step

	3.4 Error Growth Control
	3.4.1 Effect of Stability Property on Error Growth
	3.4.2 Benefits from Dynamic Partitions

	3.5 The Overall Algorithm
	3.6 Implementation and Experimental Results
	3.6.1 Implementation and Architecture
	3.6.2 Experimental Results
	3.6.3 Performance

	4. ``ReLIC: REDUCED LOGIC INFERENCE FOR COMPOSITION'' FOR QUANTIFIER ELIMINATION BASED COMPOSITIONAL REASONING AND VERIFICATION
	4.1 Introduction
	4.2 QE support for Verification: Integration of Redlog with JKind
	4.2.1 Preliminary
	4.2.2 Reduction of SMT instance to QE instance
	4.2.3 Experimental result

	4.3 ReLIC for time-independent property composition
	4.3.1 Proposed QE-based compositional verification
	4.3.2 Implementation and experimental result

	4.4 ReLIC for time-dependent property composition
	4.4.1 Approach to time-dependent property composition
	4.4.2 Implementation and experimental result

	5. CONCLUSION
	BIBLIOGRAPHY

